2005 年浙江省普通高校"专升本"联考《高等数学(一)》试卷

题 号	_	_	11	四	总分
得 分					

考试说明:

- 1、考试时间为150分钟:
- 2、满分为 150 分;
- 3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;
- 4、密封线左边各项要求填写清楚完整。

一、填空题:(只需在横线上直接写出答案,不必写出计算过程
本题共有8个空格,每一空格5分,共40分)

得分	阅卷人

1. 函数
$$y = \frac{\sin x}{x^2(x-1)} - e^x$$
 的连续区间是 ______.

2.
$$\lim_{x \to -\infty} \frac{1}{x(x + \sqrt{x^2 - 4})} =$$

$$\mathbf{3.}$$
 (1) x 轴在空间中的直线方程是 ______.

(2) 过原点且与
$$x$$
轴垂直的平面方程是______.

4. 设函数
$$f(x) = \begin{cases} \frac{1}{(x+1)^2} e^{\frac{-1}{(x-1)^2}}, x > 1 \\ a, & x = 1, \text{ if } a = \underline{\qquad}, b = \underline{\qquad} \text{ if } n, \text{ 函数 } f(x)$$
 在点 x=1 bx+1, $x < 1$

处连续.

5. 设参数方程
$$\begin{cases} x = r^2 \cos 2\theta \\ y = r^3 \sin 2\theta \end{cases}$$

(2) 当
$$\theta$$
是常数, r 是参数时,则 $\frac{dy}{dx} =$ ______.

二. 选择题. (本题共有5个小题,每一小题4分,共20 分,每个小题给出的选项中,只有一项符合要求)

得分	阅卷人

6. 设函数 y = f(x)在 [a,b]上连续可导, $c \in (a,b)$,且

$$f'(c) = 0$$
,则当()时, $f(x)$ 在 $x = c$ 处取得极大值.

- $(A) \stackrel{.}{=} a \leq x < c \text{ ft}, \quad f'(x) > 0, \quad \stackrel{.}{=} c < x \leq b \text{ ft}, \quad f'(x) > 0,$
- $(B) \stackrel{.}{=} a \le x < c$ 时, f'(x) > 0 , 当 $c < x \le b$ 时, f'(x) < 0 ,
- (C) 当 $a \le x < c$ 时, f'(x) < 0 , 当 $c < x \le b$ 时, f'(x) > 0 ,
- (D) 当 $a \le x < c$ 时, f'(x) < 0 , 当 $c < x \le b$ 时, f'(x) < 0 .

7. 设函数
$$y = f(x)$$
 在点 $x = x_0$ 处可导,则 $\lim_{h \to 0} \frac{f(x_0 + 3h) - f(x_0 - 2h)}{h} = ($).

$$(A)f'(x_0), \qquad (B)3f'(x_0), \qquad (C)4f'(x_0), \qquad (D)5f'(x_0).$$

8. 设函数
$$f(x) = \begin{cases} e^{-x^2}, & x > 0 \\ 0, & x = 0, \text{ 则积分} \int_{-1}^{1} f(x) dx = (-e^{-x^2}, & x < 0 \end{cases}$$
 .

$$(A)-1$$
, $(B)0$ $(C)\frac{1}{e}$, $(D)2$.

9. 可微函数
$$z = f(x, y)$$
 在点 (x_0, y_0) 处有 $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} = 0$ 是函数 $z = f(x, y)$ 在

点 (x_0,y_0) 取得极值的().(超纲,去掉)

- (A) 充分条件,
- (B) 必要条件,
- (C)充分必要条件, (D)既非充分条件又非必要条件.

- (A) 发散, (B) 条件收敛, (C) 绝对收敛, (D) 可能发散或者可能收敛.

三. 计算题: (计算题必须写出必要的计算过程, 只写答案的不给分, 本题共 10 个小题, 每小题 7 分, 共 70 分)

11	求函数 ν	$y = (x^2 - $	$(x+1)^x$	的导数
	71 EU XX V	$-\iota \iota$	λ 1 1	11 J J XX.

12. 求函数 $y = x^3 - 2x^2 + 1$ 在区间(-1, 2)中的极大值,极小值.

13. 求函数
$$f(x) = x^2 e^x$$
 的 n 阶导数 $\frac{d^n f}{dx^n}$.

14. 计算积分
$$\int_{-1}^{0} \frac{1}{x^2 - 3x + 2} dx$$
.

15. 计算积分
$$\int \frac{1}{1+e^{2x}} dx$$
.

16. 计算积分
$$\int_0^1 (x^2 + x - 2)e^x dx$$
.

17. 设函数
$$z = \cos(xy) + \sin(x + y)$$
, 求偏导数 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial^2 z}{\partial x \partial y}$.(超纲,去掉)

18.把函数 $y = \frac{1}{x+1}$ 展开成 x-1 的幂级数,并求出它的收敛区间.

19.求二阶微分方程
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = x$$
 的通解.

20.设a,b是两个向量,且|a|=2,|b|=3,求 $|a+2b|^2+|a-2b|^2$ 的值,其中|a|表示向量a的模.

四. 综合题: (本题共2个小题,每小题10分,共20分)

得分	阅卷人

21. 计算积分 $\int_0^\pi \sin \frac{2n+1}{2} x \sin \frac{2m+1}{2} x dx$,其中n,m 上 是整数.

22. 已知函数 $f(x) = 4ax^3 + 3bx^2 + 2cx + d$,

其中常数 a,b,c,d 满足 a+b+c+d=0,

- (1) 证明函数 f(x) 在 (0, 1) 内至少有一个根,
- (2) 当 $3b^2 < 8ac$ 时,证明函数 f(x) 在 (0, 1) 内只有一个根.

2005 年浙江省普通高校"专升本"联考《高等数学(二)》试卷

题 号	_	1	11	四	总 分
得分					

考试说明:

- 1、考试时间为 150 分钟;
- 2、满分为 150 分;
- 3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;
- 4、密封线左边各项要求填写清楚完整。

一、填空题: (只需在横线上直接写出答案, 不必写出计算过程, 本题共有8个空格, 每一空格5分, 共40分)

得分	阅卷人

1. 函数
$$y = \frac{\sin x}{x^2(x-1)} - e^x$$
的连续区间是______.

2.
$$\lim_{x \to -\infty} \frac{1}{x(x + \sqrt{x^2 - 4})} =$$
______.

3. 写出函数
$$y = \frac{4}{x-2}$$
 的水平渐近线 ______和

垂直渐近线

4. 设函数
$$f(x) = \begin{cases} \frac{1}{(x+1)^2} e^{\frac{-1}{(x-1)^2}}, x > 1 \\ a, & x = 1, \text{ if } a = \underline{\qquad}, b = \underline{\qquad}$$
 时,函数 $f(x)$ 在点 x=1 bx+1, $x < 1$

处连续.

5. 设参数方程
$$\begin{cases} x = r^2 \cos 2\theta \\ y = r^3 \sin 2\theta \end{cases}$$

(2) 当
$$\theta$$
是常数, r 是参数时,则 $\frac{dy}{dx} =$ ______.

二.选择题. (本题共有5个小题,每一小题4分,共20 分,每个小题给出的选项中,只有一项符合要求)

得分	阅卷人

6. 设函数 y = f(x)在 [a,b]上连续可导, $c \in (a,b)$,且

$$f'(c) = 0$$
,则当()时, $f(x)$ 在 $x = c$ 处取得极大值.

- $(A) \stackrel{.}{=} a \leq x < c \text{ ft}, \quad f'(x) > 0, \quad \stackrel{.}{=} c < x \leq b \text{ ft}, \quad f'(x) > 0,$
- $(B) \stackrel{.}{=} a \le x < c$ 时, f'(x) > 0 , 当 $c < x \le b$ 时, f'(x) < 0 ,
- (C) 当 $a \le x < c$ 时, f'(x) < 0 , 当 $c < x \le b$ 时, f'(x) > 0 ,
- $(D) \stackrel{.}{=} a \le x < c \text{ B}, \quad f'(x) < 0, \quad \stackrel{.}{=} c < x \le b \text{ B}, \quad f'(x) < 0.$
- 7. 设函数 y = f(x)在点 $x = x_0$ 处可导,则

$$\lim_{h \to 0} \frac{f(x_0 + 3h) - f(x_0 - 2h)}{h} = ($$
).

- 8. 设函数 $f(x) = \begin{cases} e^{-x^2}, & x > 0 \\ 0, & x = 0, \\ -e^{-x^2}, & x < 0 \end{cases}$ (C)4 $f'(x_0)$, (D)5 $f'(x_0)$.

$$(A)-1, (B)0 (C)\frac{1}{e}, (D)2.$$

- 9. 可微函数y = f(x) 在点 $x = x_0$ 处有 $f(x_0) = 0$ 是函数y = f(x) 在点 x_0 处取得极 值的 ()。
- (A) 充分条件,
- (B) 必要条件,
- (C) 充分必要条件,
- (D) 既非充分又非必要条件。

三. 计算题: (计算题必须写出必要的计算过程, 只写答案的不给分, 本题共 10 个小题, 每小题 7 分, 共 70 分)

阅卷人

11. 求函数 $y = (x^2 - x + 1)^x$ 的导数.

12. 求函数 $y = x^3 - 2x^2 + 1$ 在区间(-1, **2**)中的极大值,极小值.

13. 求函数 $f(x) = x^2 e^x$ 的 3 阶导数 $\frac{d^3 f}{dx^3}$.

14. 计算极限 $\lim_{x\to 1} \frac{e^x - e + (x-1)}{\sin(x-1)}$.

15. 计算积分
$$\int \frac{1}{1+e^{2x}} dx$$
.

16. 计算积分
$$\int_0^1 (x^2 + x - 2)e^x dx$$
.

17. 函数方程
$$F(x,y)=2x^2+2xy+y^2=0$$
,其中变量 y 是变量 x 的函数, 求 $\frac{dy}{dx}$ 和 $\frac{d^2y}{dx^2}$

18. 把函数 $y = \frac{1}{x+1}$ 展开成 x-1 的幂级数,并求出它的收敛区间.

19. 求微分方程 $\cos x \frac{dy}{dx} + (\sin x)y = \sin x$ 的通解.

20. 直线 x = 1 把圆 $x^2 + y^2 = 4$ 分成左,右两部分,求右面部分绕 y 轴旋转一周所得的旋转体体积.

四. 综合题: (本题共2个小题,每小题10分,共20分)

21. 设n, m 是整数,计算积分 $\int_0^{\pi} \cos nx \cos mx dx$.

得分	阅卷人

- 22. 已知函数 $f(x) = 4ax^3 + 3bx^2 + 2cx + d$, 其中常数 a,b,c,d,满足a+b+c+d=0,
 - (1) 证明函数f(x)在(0,1)内至少有一个根,
 - (2) 当 $3b^2 < 8ac$ 时,证明函数f(x)在(0,1)内只有一个根.

2006 年浙江省普通高校"专升本"联考《高等数学(一)》试卷

题 号	1	11	=	四	总分
得分					

考试说明:

- 1、考试时间为150分钟;
- 2、满分为 150 分:
- 3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;
- 4、密封线左边各项要求填写清楚完整。

一、填空题:(只需在横线上直接写出答案,不必写出计算过程,本题共有8个空格,每一空格5分,共40分)

得分	阅卷人

2. 函数
$$f(x) = \frac{\sqrt{6x - x^2 - 8}}{(x^2 - 2x - 3)(x - 5)}$$
 的间断点是 _______。

$$A =$$
_____ \circ

4. 设
$$y = x \ln(x + \sqrt{x^2 + 1})$$
,则 $\frac{dy}{dx} =$ ______

5.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{(1+x^3)\cos x}{1+\sin^2 x} dx = \underline{\hspace{1cm}}$$

6. 设
$$I = \int_0^1 dx \int_0^{\sqrt{x}} f(x,y) dy + \int_1^2 dx \int_0^{\sqrt{2x-x^2}} f(x,y) dy$$
 , 交换积分次序后

7. 已知
$$z = \arctan(xy)$$
,则 $dz = _____$ 。(超纲,去掉)

8. 微分方程
$$\frac{dy}{dx} = (2x+1)e^{x^2+x-y}$$
 的通解 $y=$ _______

(本题共有5个小题,每一小题4分,共20 分,每个小题给出的选项中,只有一项符合要求)

得分 阅卷人

9. 函数 f(x) 的定义域为[0,1],则函数

$$f(x+\frac{1}{5})+f(x-\frac{1}{5})$$
的定义域是……[

$$\begin{bmatrix} -\frac{1}{5}, \frac{4}{5} \end{bmatrix} \qquad \text{B.} \begin{bmatrix} \frac{1}{5}, \frac{6}{5} \end{bmatrix} \qquad \text{C.} \begin{bmatrix} \frac{1}{5}, \frac{4}{5} \end{bmatrix} \qquad \text{D.} [0,1]$$

$$B. \left[\frac{1}{5}, \frac{6}{5}\right]$$

$$C.\left[\frac{1}{5}, \frac{4}{5}\right]$$

10. 当
$$x \rightarrow 0$$
时,与 x 不是等价无穷小量的是……[

$$\sin x - x^2$$

B.
$$x - \sin^2 x$$

$$\sin x - x^2$$
 B. $x - \sin^2 x$ C. $\tan x - x^3$ D. $\sin x - x$

D.
$$\sin x - x$$

$$F(x) = \begin{cases} \frac{1}{3}x^3, 0 \le x \le 1\\ x, 1 \le x \le 2 \end{cases}$$

$$F(x) = \begin{cases} \frac{1}{3}x^3, 0 \le x \le 1 \\ x, \quad 1 \le x \le 2 \end{cases}$$
B. $F(x) = \begin{cases} \frac{1}{3}x^3 - \frac{1}{3}, 0 \le x \le 1 \\ x, \quad 1 \le x \le 2 \end{cases}$

$$F(x) = \begin{cases} \frac{1}{3}x^3, 0 \le x \le 1\\ x - 1, 1 \le x \le 2 \end{cases}$$

$$F(x) = \begin{cases} \frac{1}{3}x^3, 0 \le x \le 1 \\ x - 1, 1 \le x \le 2 \end{cases}$$

$$D. F(x) = \begin{cases} \frac{1}{3}x^3, 0 \le x \le 1 \\ x - \frac{2}{3}, 1 \le x \le 2 \end{cases}$$

12. 曲线
$$y = x(x-1)(2-x)$$
, $(0 \le x \le 2)$ 与 x 轴所围图形的面积可表示为 ………[

$$\int_{0}^{2} x(x-1)(2-x)dx$$

$$\int_{0}^{1} x(x-1)(2-x)dx - \int_{1}^{2} x(x-1)(2-x)dx$$

C.
$$-\int_{0}^{1} x(x-1)(2-x)dx + \int_{1}^{2} x(x-1)(2-x)dx$$

$$\int_{0}^{2} x(x-1)(2-x)dx$$

13. 设
$$\vec{a}$$
, \vec{b} 为非零向量,且 \vec{a} \perp \vec{b} ,则必有 ………[

$$\begin{vmatrix} \vec{a} + \vec{b} \end{vmatrix} = \begin{vmatrix} \vec{a} \end{vmatrix} + \begin{vmatrix} \vec{b} \end{vmatrix}$$

$$B. \left| \vec{a} + \vec{b} \right| = \left| \vec{a} - \vec{b} \right|$$

$$\begin{vmatrix} \vec{a} + \vec{b} \end{vmatrix} = \begin{vmatrix} \vec{a} - \begin{vmatrix} \vec{b} \end{vmatrix} \end{vmatrix}$$

$$\mathbf{D}.\,\vec{a} + \vec{b} = \vec{a} - \vec{b}$$

三. 计算题: (计算题必须写出必要的计算过程, 只写答案的不给分, 本题共 10 个小题, 每小题 7 分, 共 70 分)

得分	阅卷人

14. 计算
$$\lim_{x\to\infty} (\frac{x+3}{x+6})^{\frac{x-1}{2}}$$
 。

16. 设函数
$$\begin{cases} x = e^{2t} \cos^2 t \\ y = e^{2t} \sin^2 t \end{cases}, \quad \vec{x} \frac{dy}{dx}.$$

17. 计算不定积分
$$\int \frac{1}{\sin^2 x \cos^2 x} dx$$
.

18. 计算定积分
$$\int_0^1 \frac{dx}{e^x + e^{-x}}$$
 。

19. 求微分方程
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 2e^x$$
 满足 $y\Big|_{x=0} = 1, \frac{dy}{dx}\Big|_{x=0} = 0$ 的特解。

20. 求过直线
$$\begin{cases} 3x + 2y - z - 1 = 0 \\ 2x - 3y + 2z + 2 = 0 \end{cases}$$
 ,且垂直于已知平面 $x + 2y + 3z - 5 = 0$ 的平面方程。

21. 将函数 $f(x) = \ln(x^2 + 3x + 2)$ 展开成 x 的幂级数,并指出收敛半径。

22. 计算 $I = \iint_D \frac{x^2}{y^2} dx dy$,其中 D 由直线 x = 2, y = x 和双曲线 xy = 1 所围成的封闭图形。(超纲,去掉)

23. 当a为何值时,抛物线 $y=x^2$ 与三直线x=a, x=a+1, y=0所围成的图形面积最小,求将此图形绕x轴旋转一周所得到的几何体的体积。

四. 综合题: (本题共3个小题,共20分)

得分	阅卷人

24. (本题 8 分)设函数 f(t) 在[0,1] 上连续,且 f(x) < 1,

证明方程 $2x - \int_0^x f(t)dt = 1$ 在 (0,1) 内有且仅有一实根。

25. (本题 7 分)证明: 若 m > 0, n > 0, a > 0,则 $x^m (a - x)^n \le \frac{m^m n^n}{(m + n)^{m + n}} a^{m + n}$ 。

26. (本题 5 分)设
$$f(x)$$
 是连续函数,求证:积分 $I = \int_0^{\frac{\pi}{2}} \frac{f(\sin x)}{f(\sin x) + f(\cos x)} dx = \frac{\pi}{4}$ 。

2006 年浙江省普通高校"专升本"联考《高等数学(二)》试卷

题 号	_	11	11	四	总分
得 分					

考试说明:

- 1、考试时间为150分钟;
- 2、满分为 150 分;
- 3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;
- 4、密封线左边各项要求填写清楚完整。
- 一、填空题: (只需在横线上直接写出答案,不必写出计算过程,本题共有8个空格,每一空格5分,共40分)

得分	阅卷人

1.
$$\vec{F} f(x) = \begin{cases} \frac{\sin 4x + e^{-3ax} - 1}{x}, & x \neq 0 \\ a, & x = 0 \end{cases}$$

$$x = 0$$
 连续,则 $a = ______$

2. 曲线
$$\begin{cases} x = 1 + t^2 \\ y = t^3 \end{cases}$$
 在 $t = 2$ 处的切线方程

为 ______.

- 3. 设函数 $y = (2x+1)^{\sin x}$, 则其导数为______ .
- 4. $\int_{-2}^{2} (1 + x \cos x) dx = \underline{\qquad}$
- 5. 设 $y = \cos(\sin x)$,则 $dy = \underline{\qquad} dx$.
- 6. 曲线 $y = \sqrt{\ln x}$ 与直线 x = 1 , x = 3 及 x 轴所围成的图形绕 x 轴旋转一周,所得旋转体体积为_______.
- 7. 微分方程 y'' 4y' + 5y = 0 的通解为 _______.

二. 选择题. (本题共有5个小题,每一小题4分,共20

分,每个小题给出的选项中,只

有一	项符合要求))

9. $\lim_{x \to -\infty} \frac{x}{x+1} \arctan x = ($).

- A. $\frac{\pi}{2}$ B. $-\frac{\pi}{2}$ C.1 D.不存在

10. 当 $x \rightarrow 0$ 时, $f(x) = x - \sin x$ 是比 x^2 的() .

- A. 高阶无穷小 B. 等价无穷小

 - C. 同阶无穷小 D. 低阶无穷小

11. 级数 $\sum_{n=0}^{\infty} \frac{\cos n\pi}{\sqrt{n}+1}$ 为 ().

- A. 绝对收敛 B.条件收敛 C. 发散 D.无法判断

得分

阅卷人

12. 曲线 $y = x^2$ 与直线 y = 1 所围成的图形的面积为 ().

- A. $\frac{2}{3}$ B. $\frac{3}{4}$ C. $\frac{4}{3}$

13. 广义积分 $\int_{0}^{+\infty} \frac{x}{(1+x)^{3}} dx$ 为 (

- A. -1 B. 0 C. $-\frac{1}{2}$ D. $\frac{1}{2}$

三. 计算题: (计算题必须写出必要的计算过程, 只写答案的不给分, 本题共 10 个小题, 每小题 6分, 共 60分)

14.计算极限
$$\lim_{x\to 0} \frac{\int_0^x \tan t dt}{x^2}$$
.

15. 计算函数
$$y = x^2 \sqrt{\frac{1+x}{1-x}}$$
 的导数 y' .

16. 计算由隐函数
$$e^y = x \ln y$$
 确定的函数 $y = f(x)$ 的微分 dy .

17. 判别正项级数
$$\sum_{n=1}^{\infty} \sqrt{n} \ln(1 + \frac{1}{n^2})$$
 的敛散性.

18. 计算不定积分
$$\int \frac{dx}{\sqrt{x}(1+x)}$$

19. 求幂级数
$$\sum_{n=0}^{\infty} 3^n x^{2n}$$
 的收敛半径与收敛区间.

20. 计算定积分
$$\int_0^\pi x \sin^2 x dx$$

21. 计算微分方程 $\frac{dy}{dx} = \frac{x(1+y^2)}{y(1+x^2)}$ 满足初始条件 y(0) = 1的特解.

22. 计算函数 $y = \sin(\ln x)$ 的二阶导数 y''.

23. 将函数 $y = \ln x$ 展成 (x-1) 的幂级数并指出收敛区间.

四. 综合题: (本题共4个小题,共30分)

24. [本题 7 分] 设0 < a < b, 证明不等式

$$a^{n-1} < \frac{b^n - a^n}{n(b-a)} < b^{n-1} \quad (n = 2, 3, \dots)$$

阅卷人

25. [本题 7 分] 设函数 $f(x) = x^2 - \int_0^2 f(x) dx$,求 f(x) 在区间 [0, 2] 上的最大值与最小值.

26. [本题 8 分] 设
$$f(x) = \begin{cases} x^{\alpha} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, (α 为实数)

试问 α 在什么范围时,

- (1) f(x)在点x = 0连续;
- (2) f(x)在点x = 0可导.

27. [本题 8 分] 若函数
$$f(x) = \int_0^x (x-t)f(t)dt + e^x$$
, 求 $f(x)$.

2007 年浙江省普通高校"专升本"联考《高等数学(一)》试卷

题 号	1	11	11	四	总分
得 分					

考试说明:

- 1、考试时间为150分钟:
- 2、满分为 150 分:
- 3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;
- 4、密封线左边各项要求填写清楚完整。

一、填空题: (只需在横线上直接写出答案,不必写出计算过程,本题共有8个空格,每题5分,共40分)

得分	阅卷人

1. 函数
$$y = \frac{1}{\lg(x-2)}$$
的定义域是 _____。

6. 积分
$$\int_0^{\pi} \sqrt{\sin^7 x - \sin^9 x} dx =$$

7. 设
$$u = \sin(2x - y) + e^{x+3y}$$
,则 $du = _____$ 。(超纲,去掉)

8. 微分方程
$$xdx + (x^2y + y^3 + y)dy = 0$$
 的通解 _______。

二. 选择题: (本题共有4个小题,每一个小题5分, 共 20 分, 每个小题给出的选项中, 只有一项符合要求)

是f(x)的()

- A.连续点,
- B.跳跃间断点, C.无穷间断点,
- D.振荡间断点。

10. 下列结论中正确的是()

A.若
$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$$
,则 $\lim_{n\to\infty} a_n$ 存在,

B.若
$$\lim_{n \to \infty} a_n = A$$
,则 $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{\lim_{n \to \infty} a_{n+1}}{\lim_{n \to \infty} a_n} = 1$,

C.若
$$\lim_{n\to\infty} a_n = A$$
, $\lim_{n\to\infty} b_n = B$, 则 $\lim_{n\to\infty} (a_n)^{b_n} = A^B$,

D.若数列
$$\{a_{2n}\}$$
收敛,且 $a_{2n}-a_{2n-1}\to 0$ $(n\to\infty)$,则数列 $\{a_n\}$ 收敛。

11. 设
$$\alpha(x) = \int_0^x \frac{\sin t}{t} dt$$
, $\beta(x) = \int_0^{\sin x} (1+t)^{\frac{1}{t}} dt$, 则当 $x \to 0$ 时, $\alpha(x)$ 是 $\beta(x)$ 的 (

(A). 高阶无穷小,

- (B). 等价无穷小,
- (C). 同阶但非等价无穷小, (D). 低阶无穷小。

12. 已知函数
$$\begin{cases} x = \frac{t}{\ln t} \\ y = \frac{\ln t}{t} \end{cases}$$
 ,则 $\lim_{x \to e} \frac{dy}{dx} =$ () (A). e^2 , (B). $\frac{1}{e^2}$, (C). $-e^2$, (D). $-\frac{1}{e^2}$ 。

$$(A)$$
. e^2 ,

$$(B)$$
. $\frac{1}{a^2}$

$$(C).-e^2$$
,

$$(D) - \frac{1}{e^2}$$

三. 计算题: (计算题必须写出必要的计算过程,只写出答案的不给分,本题共10个小题,每小题7分,共70分)

得分	阅卷人

14. 由方程
$$\arctan \frac{y}{x} = \ln \sqrt{x^2 + y^2}$$
 所确定的 $y \in x$ 的函数,求 $\frac{dy}{dx}$ 。

15. 计算极限
$$\lim_{x\to 0^+} \frac{1-\cos\sqrt{x}}{x}$$
 。

16. 计算积分
$$\int e^{3\sin x+2}\cos x dx$$
。

17. 计算积分
$$\int \frac{xe^x}{\left(1+e^x\right)^2} dx$$
。

18. 计算积分
$$\int_0^{\frac{\pi}{4}} e^{2x} (\tan x + 1)^2 dx$$
 。

19. 求经过点
$$(1,1,1)$$
 且平行于直线
$$\begin{cases} 2x - y - 3z = 0 \\ x - 2y - 5z = 1 \end{cases}$$
 的直线方程。

20. 计算积分
$$\iint_D |y-x| dx dy$$
 , 其中 $D: x^2 + y^2 \le a^2$ 。 (超纲,去掉)

21. 任给有理数
$$a$$
 , 函数 $f(x)$ 满足 $f(x) = \int_0^x f(a-t)dt + 1$, 求 $f(x)$

22. 将函数
$$f(x) = \frac{x-1}{3-x}$$
 在点 $x_0 = 1$ 处展开成幂级数,并指出收敛区间(端点不考虑)。

四. 综合题: (本题共3小题,共20分)

得分 阅卷人

23. (本题 **10** 分) 设直线 y = ax 与抛物线 $y = x^2$ 所围成

的图形的面积为 S_1 , 直线 y = ax, x = 1 与抛物线 $y = x^2$

所围成的面积为 S_2 ,当a<1时,,试确定a的值,使得 $S=S_1+S_2$ 最小。

24. (本题 6 分) 证明:
$$\int_0^1 \left[\int_{x^2}^{\sqrt{x}} f(y) dy \right] dx = \int_0^1 \left(\sqrt{x} - x^2 \right) f(x) dx$$
 (超纲,去掉)

25. (本题 4 分) 当
$$0 < x < \pi$$
 时,求证 $\sin \frac{x}{2} > \frac{x}{\pi}$ 。

2007 年浙江省普通高校"专升本"联考《高等数学(二)》试卷

题 号	-	11	11	四	总 分
得 分					

考试说明:

- 1、考试时间为150分钟:
- 2、满分为 150 分:
- 3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;
- 4、密封线左边各项要求填写清楚完整。
- 一、填空题:(只需在横线上直接写出答案,不必写出计算过程,本题共有8个空格,每一空格5分,共40分)

得分	阅卷人

- 1. 设 $y = 1 + \ln(x 1)$, 其反函数为_____.
- 2. 设 $y = \frac{\ln x}{x^2 3x + 2}$, 函数 y 的可去间断点为______.
- 3. 设 $y(x) = \sqrt{x}e^x$,则曲线 y(x) 与直线 x = 1 及 x 轴所围图形绕 x 轴旋转所得旋转体的体积为_______.
- 4. 级数 $\sum_{n=1}^{\infty} u_n$ 收敛的必要条件为______.

斜渐近线为______.

- 6. 广义积分 $\int_{e}^{+\infty} \frac{1}{r \ln^2 r} dx =$ _______.
- 8. 微分方程 $xdx + (x^2y + y^3 + y)dy = 0$ 的通解 _______。

二、选择题: (本题共有5个小题,每小题4分,共20分, 每个小题给出的选项中,只有一项符合要求)

得分	阅卷人

- 9. 曲线 $v = \sqrt[3]{x} 1$ 的拐点为 ()

- (A) (0,-1) (B) (1,0) (C) (-1,-2) (D) 无拐点
- 10. 当 $x \to 0$ 时, $(1-\cos x)^2$ 是 $\sin^2 x$ 的 ().
- (A) 同阶但不是等价无穷小 (B) 等价无穷小

(C) 高阶无穷小

- (D) 低阶无穷小
- (B) -2

- 12. 对于幂级数 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^p}$,下列说法中正确的为(
- (A)当 *p* < 1 时,发散
- (B) 当p < 1时,条件收敛
- (C) 当 p > 1 时,条件收敛 (D) 当 p > 1 时,绝对收敛
- 13. 若 $y = x \sin x$, $y = \sin x$ 分别为非齐次线性方程 y'' + py' + qy = f(x) 的解,则

 $y = (x+1)\sin x$ 为下列方程中 () 的解:

- (A) y'' + py' + qy = 0 (B) y'' + py' + qy = 2f(x)
- (C) y'' + py' + qy = f(x) (D) y'' + py' + qy = xf(x)

三、计算题: (计算题必须写出必要的计算过程, 只写答案的不给分,本题共 10 个小题, 每小题 6 分,共 60 分)

阅卷人

14.求曲线 $y = 2xe^x + 1$ 在点 (0, 1) 的切线方程和法线方程.

15.
$$y = \sqrt{\frac{e^x}{x^2 + 1}}$$
, $\Re y'(x)$.

16.求微分方程 $y'' + 2y' + 5y = 2e^x$ 的通解.

17.设函数
$$y = y(x)$$
 由方程 $xy^2 - \int_0^y e^{-t^2} dt = 2$ 确定,求微分 dy .

18.求极限
$$\lim_{x\to 0} (\frac{1}{x^2} - \frac{1}{x} \cot x)$$
.

19.确定级数
$$\sum_{n=1}^{\infty} \frac{n^3 \sin n}{n!}$$
 的收敛性.

20.计算定积分
$$\int_0^2 x^2 \sqrt{4-x^2} dx$$
.

21.确定幂级数 $\sum_{n=1}^{\infty} \frac{1}{na^n} x^{n-1}$ 收敛半径及收敛域,其中 a 为正常数.

22.
$$x$$
 $\int \frac{x^2 - x + 3}{x(x^2 + 1)} dx$.

23.求解微分方程 $y' + y \cos x = e^{-\sin x}$.

四、综合题: (本题共4个小题, 共30分)

24.(本题 **7** 分) 将函数 $y = \arctan x$ 展开为泰勒级数.

得分	阅卷人

25. (本题 7 分)计算
$$\lim_{n\to\infty} \left[\frac{1}{\sqrt{n^2+2}} + \frac{1}{\sqrt{n^2+4}} + \dots + \frac{1}{\sqrt{n^2+2n}} \right]$$

26. (本题 8 分)设
$$f(x) = \begin{cases} \frac{\varphi(x) - \cos x}{x}, & x > 0 \\ e^x + a, & x \le 0 \end{cases}$$
,其中 $\varphi(x)$ 具有二阶导数,且 $\varphi(0) = 1$,

$$\varphi'(0) = 0$$
, $\varphi''(0) = 1$,

- (1) 确定 a 的值, 使 f(x) 在 x = 0 处连续;
- (2) 求 f'(x).

27. (本题 8 分)设 f(x) 在 $[1,+\infty)$ 具有连续导数,且满足方程 $x^2 f(x) - \int_1^x (1+t^2) f(t) dt = 1$,求 f(x).

2008 年浙江省普通高校"专升本"联考《高等数学(一)》试卷

题号	-	11	111	四	总分
得 分					

考试说明:

- 1、考试时间为 150 分钟;
- 2、满分为 150 分;
- 3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;
- 4、密封线左边各项要求填写清楚完整。

一. 选择题(每个小题给出的选项中,只有一项符合	要求:	4
题共有 5 个小题,每小题 4 分,共 20 分)		

得分 阅卷人

1.函数 $f(x) = (x^2 + 1)\cos x$ 是 (

A.奇函数

B.偶函数

C.有界函数

D.周期函数

2.设函数 f(x) = |x| ,则函数在 x = 0 处是(

A.可导但不连续

B.不连续且不可导

C.连续且可导

D.连续但不可导

3.设函数
$$f(x)$$
在 $[0,1]$ 上, $\frac{d^2f}{dx^2} > 0$,则成立().

$$A.\frac{df}{dx}\Big|_{x=1} > \frac{df}{dx}\Big|_{x=0} > f(1) - f(0)$$

$$B.\frac{df}{dx}\Big|_{x=1} > f(0) - f(1) > \frac{df}{dx}\Big|_{x=0}$$

$$\left. \mathsf{B.} \frac{df}{dx} \right|_{x=1} > f(0) - f(1) > \frac{df}{dx} \right|_{x=0}$$

$$\left. \text{C.} \frac{df}{dx} \right|_{x=1} > f(1) - f(0) > \frac{df}{dx} \bigg|_{x=0}$$

$$\left. \text{D.} f(1) - f(0) > \frac{df}{dx} \right|_{x=0} > \frac{df}{dx} \bigg|_{x=0}$$

D.
$$f(1)-f(0)>\frac{df}{dx}\Big|_{x=0}>\frac{df}{dx}\Big|_{x=0}$$

4.方程 $z = x^2 + y^2$ 表示的二次曲面是(

).(超纲,去掉)

A.椭球面

B.柱面

C.圆锥面

D.抛物面

5.设 f(x)在 [a,b]上连续,在 (a,b)内可导, f(a) = f(b),则在 (a,b)内,曲线 y = f(x)上平

行于 x 轴的切线() .

A.至少有一条

B.仅有一条

C.不一定存在

D.不存在

二.填空题:(只须在横线上直接写出答案,不必写出计算过程,每小题 4 分,共 40 分)

得分	阅卷人

6.计算
$$\lim_{x\to 0} \frac{1}{x} \sin \frac{x}{2} =$$

7.设函数
$$f(x)$$
在 $x = 1$ 可导,且 $\frac{df(x)}{dx}\Big|_{x=1} = 1$,则 $\lim_{x\to 0} \frac{f(1+2x)-f(1)}{x} =$ ________.

9.曲线
$$y = x^3 - 3x^2 - x$$
 的拐点坐标 ______.

10.设 $\arctan x$ 为 f(x)的一个原函数,则 f(x) = ______.

$$11. \frac{d}{dx} \int_{x}^{2} f(t)dt = \underline{\qquad}.$$

12.定积分
$$\int_{-\pi}^{\pi} (x^2 + x) dx =$$
 _______.

14.交换二次积分次序
$$\int_0^1 dx \int_0^y f(x,y) dy =$$
________.(超纲,去掉)

15. 设平面 Π 过点 (1,0,-1) 且与平面 4x-y+2z-8=0 平行,则平面 Π 的方程为 ___.

三.计算题:(每小题 6 分,共 60 分)

16.计算 $\lim \frac{e^x-1}{}$	-
	٠.
$x \rightarrow 0$ χ	

得分	阅卷人

17.设函数
$$f(x) = e^x$$
, $g(x) = \cos x$, 且 $y = f\left(\frac{dg}{dx}\right)$, 求 $\frac{dy}{dx}$.

18.计算不定积分
$$\int \frac{dx}{\sqrt{x(1+x)}}$$
.

19.计算广义积分
$$\int_0^{+\infty} xe^{-x}dx$$
.

20. 设函数
$$f(x) = \begin{cases} \cos x, x \ge 0 \\ x^4, x < 0 \end{cases}$$
,求 $\int_{-2}^{1} f(x) dx$.

21. 设
$$f(x)$$
在 $[0,1]$ 上连续,且满足 $f(x) = e^x + 2 \int_0^1 f(t) dt$,求 $f(x)$.

22.求微分方程
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} = e^x$$
 的通解.

23.将函数 $f(x) = x^2 \ln(1+x)$ 展开成 x 的幂级数.

24.设函数
$$f(x,y) = \frac{x-y}{x+y}$$
,求函数 $f(x,y)$ 在 $x = 0, y = 2$ 的全微分. (超纲,去掉)

25.计算二重积分,
$$\iint_D (x^2 + y^2) dx dy$$
, 其中 $D: x^2 + y^2 \le 1$. (超纲,去掉)

四.综合题:(本题共 30 分,其中第 1 题 12 分,第 2 题 12 分,第 3 题 6 分)

得分 阅卷人

- 26.设平面图形由曲线 $y=e^x$ 及直线 y=e, x=0 所 围成,
- (1) 求此平面图形的面积;
- (2)求上述平面图形绕x轴旋转一周而得到的旋转体的体积.

27.求函数 $y = x^3 - 3x^2 - 1$ 的单调区间、极值及曲线的凹凸区间.

28.求证:当
$$x > 0$$
时, $\left(1 + \frac{1}{x}\right)^x < e$.

2008 年浙江省普通高校"专升本"联考《高等数学(二)》试卷

题号	-	11	111	四	总分
得 分					

考试说明:

- 1、考试时间为150分钟;
- 2、满分为 150 分;
- 3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;
- 4、密封线左边各项要求填写清楚完整。
- 一. 选择题(每个小题给出的选项中,只有一项符合要求:本题共有5个小题,每小题4分,共20分)

得分	阅卷人

- 1. 当 $x \to 0$ 时, $\sec x 1$ 是 $\frac{x^2}{2}$ 的 ().
- A. 高阶无穷小

- B. 低阶无穷小
- C.同阶但不是等价无穷小
- D. 等价无穷小
- 2.下列四个命题中成立的是(
- A. 可积函数必是连续函数
- B. 单调函数必是连续函数
- C.可导函数必是连续函数
- D.连续函数必是可导函数
- 3.设 f(x) 为连续函数,则 $\frac{d}{dx} \int f(x) dx$ 等于(
- A. f(x)+C

B. f(x)

 $C. \frac{df(x)}{dx}$

- $D \cdot \frac{df(x)}{dx} + C$
- 4.函数 $f(x) = x^3 \sin x$ 是(
-) .

A. 偶函数

B. 奇函数

C. 周期函数

- D.有界函数
- 5.设 f(x) 在 [a,b] 上连续,在 (a,b) 内可导, f(a) = f(b),则在 (a,b) 内,曲线 y = f(x) 上平行于 x 轴的切线 (
- (A) 不存在

(B)仅有一条

(C).不一定存在

(D). 至少有一条

二.填空题:(只须在横线上直接写出答案,不必写出计算过程,每小题 4分,共 40分)

得分	阅卷人

6.设函数
$$f(x) = \begin{cases} e^x, x \le 0 \\ a + x, x > 0 \end{cases}$$
 在 $x = 0$ 处连续,则 $a = __$.

7.
$$\lim_{x \to 1} \frac{\sin^2(1-x)}{(x-1)^2(x+3)} = \underline{\hspace{1cm}}$$

8.
$$\lim_{x \to -\infty} \frac{x - \sqrt{x^2 + x + 1}}{x} = \underline{\hspace{1cm}}$$

9.设函数
$$f(x)$$
 在点 $x = 1$ 处可导,且 $\frac{df(x)}{dx}\Big|_{x=1} = 1$,则 $\lim_{x \to 0} \frac{f(1+2x)-f(1)}{x} =$ ______.

11.设
$$e^x$$
 为 $f(x)$ 的一个原函数,则 $f(x) = ______$.

$$12. \frac{d}{dx} \int_{x}^{2} f(t)dt = \underline{\qquad}.$$

$$13. \int_0^{+\infty} e^{-x} dx = \underline{\qquad}.$$

14.
$$\int_{-\pi}^{\pi} (x^2 + x) dx =$$
______.

15.幂级数
$$\sum_{n=0}^{\infty} \frac{(x-2)^n}{n^2}$$
 的收敛半径为 ______.

三.计算题:(每小题 6 分,共 60 分)

三.计算题:(每小题 6 分,共 60 分)
16.求极限
$$\lim_{x \to +\infty} \left(\sqrt{(a+x)(b+x)} - \sqrt{(a-x)(b-x)} \right)$$
.

得分	阅卷人

17.求极限
$$\lim_{n\to\infty} \frac{2^n + 3^n + 7^n}{(-5)^n + 7^n}$$
.

18.设
$$y = e^{\sin(ax+b)}$$
,求 dy .

19.设函数
$$y = xe^x$$
, 求 $\left. \frac{d^2y}{dx^2} \right|_{x=0}$.

20.设
$$y$$
 是由方程 $\sin(xy) - \frac{1}{y-x} = 1$ 所确定的函数,求(1). $y\Big|_{x=0}$; (2). $\frac{dy}{dx}\Big|_{x=0}$.

21.计算不定积分
$$\int x^2 \sqrt{x^3 + 1} dx$$
.

22.设函数
$$f(x) = \begin{cases} x^2, 0 \le x \le 1 \\ 2x, 1 < x \le 2 \end{cases}$$
, 求定积分 $\int_0^2 f(x) dx$.

23.计算
$$\lim_{x\to 0} \frac{\int_{0}^{x} (e^{t} + e^{-t} - 2) dt}{1 - \cos x}$$
.

24.求微分方程
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$$
 的通解.

25.将函数
$$f(x) = x^2 \ln(1+x)$$
展开成 x 的幂级数.

四. 综合题: (每小题 10 分, 共 30 分)

26.设平面图形由曲线 $y = e^x$ 及直线 y = e, x = 0 所围成,

- (1)求此平面图形的面积;
- (2)求上述平面图形绕x轴旋转一周而得到的旋转体体积.

得分	阅卷人

27.求过曲线 $y = xe^{-x}$ 上极大值点和拐点的中点并垂直于 x = 0 的直线方程。(注:由使函数 取极大值的点 x_0 和函数的极大值 $f(x_0)$ 所构成的一对数组 $(x_0, f(x_0))$ 称为曲线 y = f(x) 上的极大值点).

28.设函数 y = f(x)在点 x_0 处可导,证明它在点 x_0 处一定连续,并举例説明其逆不真.

2009 年浙江省普通高校"专升本"联考《高等数学(一)》试卷

题 号	1	11	111	四	总分
得 分					

考试说明:

- 1、考试时间为150分钟;
- 2、满分为 150 分;
- 3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;
- 4、密封线左边各项要求填写清楚完整。

一. 选择题(每个小题给出的选项中,只有一项符合要求.本题 共有5个小题,每小题4分,共20分)

得分	阅卷人

1 函数
$$y = \sqrt{1-x} + \arccos \frac{x+1}{2}$$
 的定义域是

A. $x < 1$
B. $(-3,1)$
C. $\{x | x < 1\} \cap \{-3 \le x \le 1\}$
D. $-3 \le x \le 1$.

2. 极限 $\lim_{x \to \infty} \frac{\sin 3x}{x}$ 等于

A. 0
B. $\frac{1}{3}$
C. 3
D. 1.

3. 下列函数中,微分等于 $\frac{1}{x \ln x} dx$ 的是

A. $x \ln x + c$
B. $y = \ln(\ln x) + c$
C. $\frac{1}{2} \ln^2 x + c$
D. $\frac{\ln x}{x} + c$.

$$4. \int d\left(1-\cos x\right) =$$

$$A. 1 - \cos x \qquad \qquad B. - \cos x + c$$

$$C. x-\sin x+c$$

$$D. \sin x+c.$$

$$5. 方程 z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$
表示的二次曲面是(超纲, 去掉)

5. 方程
$$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$
表示的二次曲面是 (超纲, 去掉)
A. 椭球面
B. 圆锥面

二. 填空题(只须在横线上直接写出答案, 不必写出计算过程, 本题共有10个小题, 每小题4分, 共40分)

得分	阅卷人

6.
$$\lim_{x \to 2} \frac{x^2 + x - 6}{x^2 - 4} = \underline{\hspace{1cm}}$$

7. 设函数
$$f(x) = \begin{cases} e^x, & x \le 0 \\ a+x, & x > 0 \end{cases}$$
 在点 $x = 0$ 处连续,则 $a = 1$.

8. 设函数
$$y = xe^x$$
, 则 $y''(0) = _____.$

9. 函数
$$y = \sin x - x$$
 在区间 $[0, \pi]$ 上的最大值是 ______.

$$10. \int \left(\sin\frac{\pi}{4} + 1\right) dx = \underline{\qquad}.$$

11.
$$\int_{-a}^{a} x \left[f(x) + f(-x) \right] dx = \underline{\qquad}.$$

12. 设
$$F(x) = \frac{x}{x-a} \int_a^x f(t) dt$$
, 其中 $f(t)$ 是连续函数,则 $\lim_{x \to a^+} F(x) =$ ______.

13. 设
$$\vec{a} = 3\vec{i} - \vec{j} - 2\vec{k}$$
, $\vec{b} = \vec{i} + 2\vec{j} - \vec{k}$, 则 $\vec{a} \cdot \vec{b} =$ _______.

14. 设
$$z = (2x + y)^y$$
, 则 $\frac{\partial z}{\partial x}\Big|_{(0,1)} =$ _______. (超纲, 去掉)

三. 计算题(本题共有10个小题,每小题6分,共60分)

16. 计算
$$\lim_{x\to 0} \frac{e^x - e^{-x}}{x}.$$

得分	阅卷人

17. 设函数
$$y = \frac{x}{\sqrt{1+x^2}}$$
, 求 dy .

$$18. 计算 \int \frac{e^x}{1+e^x} dx .$$

19. 设
$$\begin{cases} x = \int_0^t \sin u^2 du \\ y = \cos t^2 \end{cases}, \, \stackrel{}{x} \frac{dy}{dx}.$$

20. 计算
$$\int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2x + 2}$$
.

21. 设曲线
$$y = f(x)$$
 在原点与曲线 $y = \sin x$ 相切, 求 $\lim_{n \to \infty} \sqrt{n} \sqrt{f(\frac{2}{n})}$

22. 求微分方程
$$y$$
'tan $x + y = -3$ 满足初值条件 $y\left(\frac{\pi}{2}\right) = 0$ 的特解.

23. 设 z = z(x,y) 是由方程 $x^2 + y^2 + z^2 = 4z$ 所确定的隐函数, 求 $\frac{\partial z}{\partial x}$. (超纲, 去掉)

24. 求
$$\iint_D \sin \sqrt{x^2 + y^2} dx dy$$
, 其中区域 $D = \{(x, y) | \pi^2 \le x^2 + y^2 \le 4\pi^2 \}$. (超纲, 去掉)

25. 求幂级数 $\sum_{n=1}^{\infty} \frac{1}{3^n} x^{2n-1}$ 的收敛域.

四. 综合题(本题有3个小题,共30分,其中第1题14分,第2题8分,第3题8分)

得分阅卷人

26. 求函数 $y = \frac{x+1}{x^2}$ 的单调区间, 极值及其图形的凹凸区间. (本题 14 分)

27. 设 f(x)在[0,1]上可导,f(0)=0,f(1)=1,且 f(x)不恒等于 x,求证:存在 $\xi \in (0,1)$ 使得 $f'(\xi) > 1$. (本题 8 分)

28. 设曲线 $y = -x^2 + x + 2$ 与 y 轴交于点 P, 过 P 点作该曲线的切线, 求切线与该曲线及 x 轴围成的区域绕 x 轴旋转生成的旋转体的体积. (本题 8 分)

2009 年浙江省普通高校"专升本"联考《高等数学(二)》试卷

题号	1	1	111	四	总分
得 分					

考试说明:

- 1、考试时间为150分钟;
- 2、满分为 150 分;
- 3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;
- 4、密封线左边各项要求填写清楚完整。
- 一. 选择题(每个小题给出的选项中,只有一项符合要求.本题 共有5个小题,每小题4分,共20分)

阅卷人

1. 设f(x)的定义域为[0,1],则函数 $f(x+\frac{1}{4})+f(x-\frac{1}{4})$ 的 定义域是

$$B. \left[-\frac{1}{4}, \frac{5}{4} \right] \qquad C. \left[-\frac{1}{4}, \frac{1}{4} \right]$$

$$C.$$
 $-\frac{1}{4},\frac{1}{4}$

$$D.\left[\frac{1}{4},\frac{3}{4}\right].$$

2. 下列极限存在的是

$$A. \lim_{x \to \infty} \frac{x}{\sin x}$$

$$B. \lim_{x\to\infty} 2^{\frac{1}{x}}$$

$$C. \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n^2}$$

$$D. \lim_{x\to 0} \frac{1}{2^x - 1}.$$

$$3. \int d\left(1-\cos x\right) =$$

$$A. 1 - \cos x$$

B.
$$x - \sin x + c$$

$$C.-\cos x+c$$

 $D. \sin x + c$.

4.下列积分中不能直接使用牛顿 - 莱布尼兹公式的是

)

$$A. \int_{0}^{\frac{\pi}{4}} \cot x dx$$

$$B. \int_{0}^{1} \frac{1}{1+a^{x}} dx$$

$$C. \int_0^{\frac{\pi}{4}} \tan x dx$$

$$D. \int_{0}^{1} \frac{x}{1+x^2} dx$$
.

5.下列级数中发散的是

()

A.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$$

A.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$$
 B. $\sum_{n=1}^{\infty} (-1)^{n-1} \left(\frac{1}{n} + \frac{1}{n+1} \right)$

$$C. \sum_{n=1}^{\infty} \left(-1\right)^{n-1} \frac{1}{\sqrt{n}} \qquad D. \sum_{n=1}^{\infty} \left(-\frac{1}{n}\right).$$

$$D. \sum_{i=1}^{\infty} \left(-\frac{1}{n}\right).$$

二.填空题(只须在横线上直接写出答案,不必写出计算 过程, 本题共有10个小题, 每小题4分,共40分)

得分 阅卷人

6.若 $\lim a_n = k(k)$ 为常数),则 $\lim_{n \to \infty} a_{2n} =$

7. 设函数
$$f(x) = \begin{cases} e^x, & x \le 0 \\ a+x, & x > 0 \end{cases}$$
 在点 $x = 0$ 处连续则 $a =$

8.曲线 $y = \arctan x$ 在横坐标为 1 的点处的切线斜率为_____

9. 设函数 $y = xe^x$,则 $y"(0) = ______.$

10. 函数 $y = \sin x - x$ 在区间 $[0, \pi]$ 上的最大值是 _______.

12.
$$\int \left(\sin\frac{\pi}{4} + 1\right) dx = \underline{\qquad}$$

 $13. \int_{-a}^{a} x \left[f(x) + f(-x) \right] dx = \underline{\qquad}.$

14.设 $F(x) = \frac{x}{x-a} \int_a^x f(t) dt$,其中 f(t) 是连续函数,则 $\lim_{x \to a^+} F(x) = _____$. 15.微分方程 $y' - y \cot x = 2x \sin x$ 的通解是_____

三.计算题(本题共有10个小题,每小题6分,共60分)

16.计算
$$\lim_{x\to 0} \frac{e^x + e^{-x} - 2}{x^2}$$
.

得分	阅卷人

17.设曲线
$$y = f(x)$$
 在原点与曲线 $y = \sin x$ 相切,求 $\lim_{n \to \infty} \sqrt{n} \sqrt{f(\frac{2}{n})}$.

18.设函数
$$y = \frac{x}{\sqrt{1+x^2}}$$
,求 dy .

19.设
$$y = y(x)$$
 是由方程 $\sqrt{x^2 + y^2} = e^{\arctan \frac{y}{x}}$ 确定的隐函数,求 $\frac{dy}{dx}$.

20.计算
$$\int \frac{e^x}{1+e^x} dx$$
.

21.设
$$\begin{cases} x = \int_0^t \sin u^2 du \\ y = \cos t^2 \end{cases}$$
,求
$$\frac{dy}{dx}.$$

22.计算
$$\int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2x + 2}.$$

23.设
$$f(x) = \begin{cases} e^{-x}, & -1 \le x < 0 \\ x+1, & 0 \le x \le 1 \end{cases}$$
 , 求 $\Phi(x) = \int_{-1}^{x} f(t) dt$ 在 $[-1,1]$ 上的表达式.

24.求微分方程
$$y$$
' $\tan x + y = -3$ 满足初值条件 $y\left(\frac{\pi}{2}\right) = 0$ 的特解.

25.求幂级数
$$\sum_{n=1}^{\infty} \frac{1}{3^n} x^{2n-1}$$
 的收敛域.

四.综合题(本题有3个小题,共30分,其中第1题14分,第2题8分,第3题8分)

得分 阅卷人

26.求函数 $y = \frac{x+1}{x^2}$ 的单调区间,极值及其图形的凹凸区间. (本题 14 分)

27.已知
$$\int_0^x (x-t) f(t) dt = 1 - \cos x$$
,证明: $\int_0^{\frac{\pi}{2}} f(x) dx = 1$.(本题 8 分)

28.设曲线 $y = -x^2 + x + 2$ 与 y 轴交于点 P,过 P 点作该曲线的切线,求切线与该曲线及 x 轴围成的区域绕 x 轴旋转生成的旋转体的体积. (本题 8 分)

浙江省 2010 年选拔优秀高职高专毕业生进入本科学习统一考试

高等数学

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分

注意事项:

- 1. 答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
- 2. 每小题选出答案后,用 2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。不能答在试题卷上。
- 一、选择题(每个小题给出的选项中,只有一项符合要求:本题共有 5 个小题,每小题 4 分,共 20 分)

1. 下列函数相等的是 ()

A.
$$y = \frac{x^2}{x}, y = x$$
 B. $y = \sqrt{x^2}, y = x$

C.
$$y = x$$
, $y = (\sqrt{x})^2$ D. $y = |x|$, $y = \sqrt{x^2}$

2. 曲线
$$y = \frac{e^x}{x}$$
 ()

- A. 仅有水平渐近线 B. 既有水平又有垂直渐近线
- C. 仅有垂直渐近线 D. 既无水平又无垂直渐近线
- 3. 设区域 D 由直线 x = a, x = b(b > a), 曲线 y = f(x) 及曲线 y = g(x) 所围成,则区域 D 的面积为

A.
$$\int_{a}^{b} [f(x) - g(x)]dx$$
 B. $|\int_{a}^{b} [f(x) - g(x)]dx|$

C.
$$\int_{a}^{b} [g(x) - f(x)] dx$$
 D. $\int_{a}^{b} |f(x) - g(x)| dx$

4. 若方程
$$x = \ln \frac{z}{y}$$
 确定二元隐函数 $z = f(x, y)$,则 $\frac{\partial z}{\partial x} =$ () (超纲,划掉)

- A. 1 B. e^{x} C. ye^{x} D. y
- 5. 下列正项级数收敛的是 (

A.
$$\sum_{n=2}^{\infty} \frac{1}{3n+1}$$
 B. $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ C. $\sum_{n=2}^{\infty} \frac{1}{n (\ln n)^2}$ D. $\sum_{n=2}^{\infty} \frac{1}{n \sqrt[n]{n}}$

- 二、填空题(只需在横线上直接写出答案,不必写出计算过程,本题共有 10 个小题,每小题 4 分,共 40 分)
- 6. 当 $x \rightarrow 0$ 时, $2x + a \sin x$ 与x 是等价无穷小,则常数 a 等于______.
- 7. 设函数 $f(x) = \begin{cases} \frac{\sin 2x + e^{2ax} 1}{x}, & x \neq 0 \\ a & x = 0 \end{cases}$ 在 $(-\infty, +\infty)$ 内连续,则 a =______.
- 8. 曲线 $y = \frac{1}{x}$ 在点 (1,1) 处的切线方程为_____.
- 9. 设 $\int_0^x f(t)dt = x \sin x$,则 f(x) =______.
- 10. 设函数 $z = \ln(x^2 + y^2)$,则 $dz \Big|_{\substack{x=1 \ y=1}} =$ ______. (超纲,划掉)
- 11. 定积分 $\int_{-2}^{2} (x-2)\sqrt{4-x^2} dx =$ ______.
- 12. 过点 (-1,2,0) 并且与平面 x+y+2z=3 垂直的直线方程为______.
- 13. 二重积分 $\int_0^1 dx \int_x^1 \frac{\sin y}{y} dy =$ _______. (超纲,划掉)
- 14. 幂级数 $\sum_{n=1}^{\infty} \frac{n!}{n^n} x^n$ 的收敛半径 R =______.
- 15.微分方程 xy' 2y = 0 的通解是_____.

三、计算题(本题共有10个小题,每小题6分,共60分)

16.
$$\vec{x} \lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1} \right)$$
.

17. 己知函数
$$y = \ln \sin(1-2x)$$
,求 $\frac{dy}{dx}$.

18. 求不定积分
$$\int x \arctan x dx$$
.

19.函数
$$f(x) = \begin{cases} x+2, & x \le 0, \\ x-2, & x > 0, \end{cases}$$
 计算 $\int_{-1}^{1} f(x) dx$ 的值.

20. 设函数 z = z(x,y) 是由方程 $e^{-xy} + 2z - e^z = 2$ 所确定,求 $dz \mid_{x=2}$. (超纲,划掉) $y = -\frac{1}{2}$

21. 设 D 是由直线 x = 0, y = 1 及 y = x 围成的区域, 计算 $I = \iint_D e^{-y^2} dx dy$. (超纲,划掉)

22. 设由参数方程 $\begin{cases} x = e^t, \\ y = t^2 + 2t, \end{cases}$ 所确定的函数为 $y = y(x), \ \ \bar{x} \frac{d^2y}{dx^2} \Big|_{t=1},$

23. 求函数 $f(x,y) = x^2 + 3y^2 - 2xy + 8x$ 的极值. (超纲,划掉)

24. 求微分方程 $y'' + 2y' - 3y = e^{2x}$ 的通解.

25. 将函数 $f(x) = \frac{1}{x^2 + 4x + 3}$ 展开成 (x-1) 的幂级数.

四、综合题(本题3个小题,共30分,其中第1题12分,第2题12分,第3题6分)

- 26. 设平面图形 D 是由曲线 $y = e^x$, 直线 y = e 及 y 轴所围成的, 求:
- (1) 平面图形 D 的面积;
- (2) 平面图形 D 绕 y 轴旋转一周所成的旋转体的体积.

27. 欲围一个面积为 150 m² 的矩形场地. 所用材料的造价其正面是每平方米 6 元,其余三面是每平方米 3 元. 问场地的长、宽各为多少时,才能使所用的材料费最少. (超纲,划掉)

28. 设函数 f(x) 在闭区间 [0,1] 上连续,在开区间 (0,1) 内可导且 f(0)=f(1)=0, $f(\frac{1}{2})=1$,证明:存在 $\xi\in(0,1)$ 使 $f'(\xi)=1$.

浙江省 2011 年选拔优秀高职高专毕业生进入本科学习统一考试 高等数学

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分

注意事项:

- 1. 答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
- 2. 每小题选出答案后,用 2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。不能答在试题卷上。
- 一、选择题(每个小题给出的选项中,只有一项符合要求:本题共有 5 个小题,每小题 4 分,共 20 分)

1. 函数
$$f(x) = \arcsin(1-x) + \ln(\frac{1+x}{1-x})$$
 的定义域为 ()

A. [0,1) B. [0,2) C. (-1,1) D. (-1,2]

A.
$$\frac{1}{2}e^{2x-1} + C$$
 B. $2e^{\frac{1}{2}(x+1)} + C$ C. $\frac{1}{2}e^{2x+1} + C$ D. $2e^{\frac{1}{2}(x-1)} + C$

A.
$$e^{-x} + C$$
 B. $\frac{1}{x} + C$ C. $-e^{-x} + C$ D. $-\frac{1}{x} + C$

A. $f(x^4)$ B. $x^2 f(x^4)$ C. $2xf(x^4)$ D. $2xf(x^2)$

5. 下列级数中,条件收敛的是 ()

A. $\sum_{n=1}^{\infty} \sin \frac{\pi}{n^2}$ B. $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{n}}$ C. $\sum_{n=1}^{\infty} (-1)^n \frac{2}{3^n}$ D. $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{n^3}}$

二、填空题(只需在横线上直接写出答案,不必写出计算过程,本题共有 10 个小题,每小题 4 分,共 40 分)

6.
$$\lim_{x \to +\infty} x[\ln(x+2) - \ln x] =$$
_____.

- 7. 设函数 $f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ a, & x = 0 \end{cases}$ 在 $(-\infty, +\infty)$ 内处处连续,则 a =______.
- 8. 当 $x \to 0$ 时, f(x) 与 $1 \cos x$ 等价,则 $\lim_{x \to 0} \frac{f(x)}{x \sin x} = \underline{\qquad}$
- 9. 设函数 y = y(x) 由方程 $\ln(x^2 + y) = x^3 y + \sin x$ 确定,则 $\frac{dy}{dx}\Big|_{x=0} =$ ______.
- 10. 过点 (1,2,-1) 与直线 $\begin{cases} x = -t + 2 \\ y = 3t 4$ 垂直的平面方程为______. z = t 1
- 11. 计算不定积分 $\int \frac{dx}{x+x^2} = _____.$
- 12. $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x dx}{1 + \cos x} = \underline{\qquad}.$
- 13. 已知 f(0) = 2, f(2) = 3, f'(2) = 4, 则 $\int_0^2 x f''(x) dx =$ ______.
- 14. 已知微分方程 $y' + ay = e^x$ 的一个特解为 $y = xe^x$,则 $a = _____$.
- 15. 级数 $\sum_{n=0}^{\infty} \frac{3^n}{n!}$ 的和为______.

三、计算题(本题共有10个小题,每小题6分,共60分)

16. 求极限
$$\lim_{x\to 0} \frac{e^x - e^{\tan x}}{x \tan^2 x}$$
.

17.已知函数
$$x = x(y)$$
 由参数方程
$$\begin{cases} x = t - \ln(1+t^2) \\ y = \arctan t \end{cases}$$
 确定,求
$$\frac{d^2x}{dy^2}.$$

18.已知函数
$$y = y(x)$$
 由方程 $e^{xy} + y \sin x = \cos 2x$ 确定,求 $\frac{dy}{dx}$

19.已知
$$y = \ln \sin(1-2x)$$
,求 $\frac{dy}{dx}$.

20.计算不定积分
$$\int \frac{xe^x}{(1+e^x)^2} dx$$
.

21.计算定积分
$$\int_0^1 \ln(x+1) dx$$
.

22.求
$$z = e^x \cos(x + y)$$
 的全微分. (超纲,划掉)

23.计算二重积分 $\iint_D \sqrt{x^2+y^2} d\sigma$, 其中 D 是由圆 $x^2+y^2=3$ 所围成的闭区域. (超纲,划掉)

24.求微分方程 $y' - 2xy = xe^{-x^2}$ 的通解.

25.将函数 $f(x) = \frac{1}{x}$ 展开成 (x-3) 的幂级数,并指出收敛区间.

四、综合题(本题3个小题,共30分,其中第1题12分,第2题12分,第3题6分)

- 26. 平面图形由抛物线 $y^2 = 2x$ 与该曲线在点 $(\frac{1}{2}, 1)$ 处的法线围成. 试求:
- (1) 该平面图形的面积;
- (2) 该平面绕 x 轴旋转一周形成的旋转体的体积.

27.己知
$$3f(x) - f(\frac{1}{x}) = \frac{1}{x}$$
, 求 $f(x)$ 的极值.

28.设函数 f(x) 在闭区间[0,1] 上连续,在开区间(0,1) 内可导,且 f(0)=0, f(1)=2 . 证明:在(0,1) 内至少存在一点 ξ ,使得 $f'(\xi)=2\xi+1$ 成立.

浙江省 2012 年选拔优秀高职高专毕业生进入本科学习统一考试 高等数学

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分

注意事项:

1.	答题前,	考生务必将自己的姓名、	准考证号用黑色字迹的签字笔或钢笔填写在答题纸规
	定的位置	上。	

- 2. 每小题选出答案后,用 2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。不能答在试题卷上。
- 一、 选择题: 本大题共 5 小题, 每小题 4 分, 共 20 分。在每小题给出的四个选项中, 只有一项是符合题目要求的。

1.设
$$f(x) = \frac{\sin(x+1)}{1+x^2}$$
, $-\infty < x < +\infty$,则此函数是()

- A.有界函数 B.奇函数
- C.偶函数 D 周期函数.
- 2.若函数 y = f(x)满足 $f'(x_0) = 2$,则当 $\Delta x \to 0$ 时,函数 y = f(x)在 $x = x_0$ 处的微分dy是
- A.与 Δx 等价的无穷小 B.与 Δx 同阶的无穷小
- C. 比 Δx 低阶的无穷小 D.比 Δx 高阶的无穷小
- 3. 设函数f(x)满足f(0) = 1, f(2) = 3, f'(2) = 5, f''(x)连续,则 $\int_0^2 x f''(x) dx = ($
- A.10 B.9 C.8 D.7
- 4.由曲线 $y = \sqrt{x}, y = 1, x = 4$ 所围成的平面图形的面积是 ()
- A. $\frac{4}{3}$ B. $\frac{5}{3}$ C. $\frac{7}{3}$ D. $\frac{16}{3}$
- 5.已知二阶微分方程 $y''+2y'+2y = e^{-x} \sin x$,则其特解形式为 ()
- A. $e^{-x}(a\cos x + b\sin x)$ B. $ae^{-x}\cos x + bxe^{-x}\sin x$
- C. $xe^{-x}(a\cos x + b\sin x)$ D. $axe^{-x}\cos x + be^{-x}\sin x$

二、 填空题: 本大题共 10 小题, 每小题 4 分, 共 40 分。

6. 极限
$$\lim_{x \to +\infty} x \left[\sqrt{x^2 + 2x + 5} - (x+1) \right] = \underline{\hspace{1cm}}$$
.

7.函数
$$y = \sin \sqrt{x + \sqrt{1 - x^2}}$$
的连续区间为 ______.

8. 已知
$$f'(3) = 2$$
,则 $\lim_{h \to 0} \frac{f(3-2h) - f(3)}{h} = \underline{\qquad}$.

9. 若函数
$$y = y(x)$$
由方程 $y = 1 + xe^y$ 所确定,则 $y' = _____$.

$$10. \int \frac{\cos^2 x}{\sin x} dx = \underline{\qquad}.$$

11. 极限
$$\lim_{n\to\infty} \frac{1}{n\sqrt{n}} (\sqrt{1} + \sqrt{2} + ... + \sqrt{n})$$
用定积分表示为 _____.

12.级数
$$\sum_{n=0}^{\infty} \frac{x^n}{3^{\sqrt{n}}}$$
的收敛区间是______.

13. 一阶线性微分方程
$$y'+P(x)y=Q(x)$$
的通解为_____.

14. 在
$$xOy$$
平面上与向量 $a = (4,-3,7)$ 垂直的单位向量是 _____.

15. 平面
$$2x+y-z-1=0$$
与平面 $2x+y-z+3=0$ 之间的距离等于_____.

三、计算题:本题共有 8 小题,其中 16-19 小题每小题 7 分,20-23 小题每小题 8 分, 共 60 分。计算题必须写出必要的计算过程,只写答案的不给分。

16. 设
$$f(x) = \begin{cases} \left[\arctan(x^{-1})\right]\sin x + x^{-1}\ln(1+3x), -\frac{1}{3} < x < 0, \\ a, x \ge 0. \end{cases}$$
 求 a 的值.

18. 求函数
$$y = \frac{3}{x^2 - 2x + 4}$$
图形的拐点与凹凸区间.

19. 讨论方程 $x^2 = x \sin x + \cos x$ 的根的个数.

20.
$$\Re \int x^2 \ln x dx$$
.

21. 计算
$$\int_{-1}^{4} x \sqrt{|x|} dx$$
.

22. 计算瑕积分
$$\int_0^1 \frac{dx}{\sqrt{x(x+1)^3}}$$
.

23.将函数 $f(x) = \ln(1-x-2x^2)$ 展开成x的幂级数,并指出其收敛域.

四、综合题: 本大题共 3 小题, 每小题 10 分, 共 30 分。

24. 己知
$$f(x) = \lim_{n \to \infty} \frac{\ln(e^n + x^n)}{n} (x > 0), 求 f(x).$$

25.设
$$a > b > e$$
,证明: $a^b < b^a$.

26.若f(x)在[0,1]上是连续的.

(1) 证明
$$\int_0^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_0^{\pi} f(\sin x) dx;$$

(2) 计算
$$\int_0^{\pi} \frac{x \sin^3 x}{1 + \cos^2 x} dx.$$

浙江省 2013 年选拔优秀高职高专毕业生进入本科学习统一考试

高等数学

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分

注意事项:

- 1. 答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
- 2. 每小题选出答案后,用 2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。不能答在试题卷上。

一、 选择题: 本大题共 5 小题, 每小题 4 分, 共 20 分。在每小题给出的四个选项中, 只有一项是符合题目要求的。

1. 设 $f(x) = \sin x$	$n(\cos 2^x), x \in \mathbb{R}$,则却	比函数是()				
A. 有界函数	B. 奇函数	C. 偶函数	D. 周期函数			
2. 若函数 y = .	f(x) 是区间[1,5]上	上的连续函数,则i	亥函数一定()			
A. 在区间[1, 5] C. 在区间(1, 5]			5)上有最小值 5)上有最大值			
$3. \int_0^\pi x \cos x dx$;=()					
A. 0	B. 1	C1	D2			
4. 由曲线 $y = \sqrt{x}$, $y = x$ 所围成的平面图形的面积是()						
A. $\frac{3}{2}$	B. $\frac{1}{2}$	C. $\frac{1}{3}$	D. $\frac{1}{6}$			
5. 二阶微分方	程 $y''+y'-6y=3e$	$e^{2x}\sin x\cos x$,	则其特解的形式为()		
A. $e^{2x}(a\cos$	$x + b \sin x$	B. $e^{2x}(a + c)$	$\cos 2x + b \sin 2x)$			
$c. xe^{2x}(a cc$	$\cos x + b \sin x$	D. $xe^{2x}(a)$	$\cos 2x + b \sin 2x$			

二、 填空题: 本大题共 10 小题, 每小题 4 分, 共 40 分。

- 6. 极限 $\lim_{x\to 0} xIn \sin(x^2) =$
- 7. 函数 $y = \sqrt{\sin x}$ 的定义域是
- 8. 已知 f'(1) = 1, $\lim_{\Delta x \to 0} \frac{f(1 \Delta x) f(1 + \Delta x)}{\Delta x} =$ ______
- 9. 若函数 y = y(x) 由方程 $y = 1 + xe^{\sin y}$ 确定,则 y' =

$$\int \frac{dx}{x \ln x} = \underline{\hspace{1cm}}$$

11. 极限 $\lim_{n\to\infty} \frac{1}{n^2} (\sin \frac{1}{n} + 2 \sin \frac{2}{n} + \dots + n \sin 1)$ 用定积分表示______

$$\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n+1}}{n}$$
的收敛区间是______

- 13. 求常微分方程 $y'+P(x)y = Q(x)y^2$ 的通解 (超纲,划掉)
- 14. 求法向量是 a=(1, -3, 2)且过点(1, 0, 1)的平面方程
- 15. 球面 x²+y²+(z-2)²=4 与平面 2x+y-z+26=0 之间的距离是_____

三、计算题: 本题共有 8 小题, 其中 16-19 小题每小题 7 分, 20-23 小题每小题 8 分, 共 60 分。计算题必须写出必要的计算过程, 只写答案的不给分。

$$16. 设 f(x) = \begin{cases} \frac{e^x \sin x - ax(1+x)}{\sin^3 x}, -\pi < x < 0 \\ \frac{1}{3}, x \ge 0 \end{cases}, \quad$$
若f(x)连续,求a的值

18. 求
$$y = \frac{e^{2x}}{x}$$
的单调区间和凹凸区间

19.讨论方程
$$3x^2 - 1 = \cos x$$
有几个根

$$20.求\int x \sin 2x dx$$

$$21 . \int_0^1 \frac{2 \ln(1+x)}{1+x} dx$$

22.计算瑕积分
$$\int_0^1 \frac{dx}{\sqrt{x(x+1)}}$$

23. 把函数
$$f(x) = \frac{1}{x^2 + x - 6}$$
 展开成 x 的幂级数,并求收敛域

四、综合题: 本大题共 3 小题, 每小题 10 分, 共 30 分。

24.证明: f(x)在[-a,a]上的连续函数,则 $\int_{-a}^{a} f(x)dx = \begin{cases} 2\int_{0}^{a} f(t)dt, \Xi f(x)$ 是偶函数 0, $\Xi f(x)$ 为奇函数

25. 设f(t)是实的非负可积函数, 若可积函数 x(t满足) $x(t) \le \int_0^t f(s)x(s)ds$,则证明: $x(t) \le 0$.

26. 若 f(x) 在 x = 0 的某个邻域中有连续的一阶导数 f'(0) = 0, f''(0) 存在,

证明:
$$\lim_{x\to 0^+} \frac{f(x) - f(\sin x)}{x^4} = \frac{1}{6} f''(0).$$

浙江省 2014 年选拔优秀高职高专毕业生进入本科学习统一考试 高等数学

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分

注意事项:

1.	答题前,	考生务必将自己的姓名、	准考证号用黑色字迹的签字笔或钢笔填写在答题纸规
	定的位置	上。	

2. 每小题选出答案后,用 2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。不能答在试题卷上。

一、选择题:本大题共 5 小题,每小题 4 分,共 20 分。在每小题给出的四个选项中,只有一项是符合题目要求的。

只有一项是符合题目要求的。					
1.当 $x \rightarrow x_0$ 时,若 $f(x)$ 的极限存在, $g(x)$ 的极限不存在,那么下面说法正确的是()					
A. f(x)·g(x)必定极限存在 B. f(x)·g(x)必定极限不存在 C. 若 f(x)·g(x)极限若存在,极限必定为零 D. f(x)·g(x)极限可能存在,也可能不存在					
2. 函数 $f(x) = x^3 - 3x$ 上切线方程平行 x 轴的点是 ()					
A. (0, 0) B. (1, 2) C. (-1, 2) D. (1, 3)					
3 函数 $f(x) = (x^2 - x - 2) x^3 - x $ 不可导占的个数是 ()					

4. 若
$$f(x) = \frac{d}{dx} \int_{0}^{x} \sin(t-x)dt$$
, 则 $f(x) = ($)

A.
$$-\sin x$$
 B. $-1+\cos x$ C. $\sin x$ D. 0
5. 微分方程 $y'+\frac{y}{x}=\frac{1}{x(x^2+1)}$ 的通解为()

A. 3 B. 1 C. 0 D. 2

A.
$$\arctan \frac{1}{x} + C$$
 B. $\frac{1}{x}(\arctan x + C)$

C.
$$\frac{1}{x} \arctan x + C$$
 D. $\frac{1}{x} + \arctan x + C$

二、 填空题:本大题共10小题,每小题4分,共40分。

6.设
$$f(x)$$
在 R 上连续, $f(2) = 3$,则 $\lim_{x \to 0} \frac{\sin 3x}{x} f(\frac{\sin 2x}{x}) =$

$$7. \forall f(x) = \begin{cases} x + 1x < 0 \\ x \quad x > = 0 \end{cases}, \forall f[f(x)] =$$

8.函数
$$y = x \ln(e + \frac{1}{x})(x > 0)$$
的渐近线是

$$9.y = \ln \sqrt{\frac{1-x}{1+x}}, \text{My'}(0) =$$

10.
$$y = \frac{1}{1+x^2}(x > 0)$$
的拐点是

11. 由曲线 $y = \sqrt{x}, y = x$ 所围成的平面图形的面积是

12.将函数 $f(x) = \sin^2 x$ 展开成x的幂级数

13.已知向量
$$(\vec{a}\times\vec{b})\cdot\vec{c}=1$$
,则 $[(\vec{a}+\vec{b})\times(\vec{b}+\vec{c})]\cdot\vec{c}$ 的值为 (超纲,划掉)

14. 微分方程
$$(1+x)ydy + (1-y)xdx = 0$$
的通解是

15.已知 y"+ay'+by = 0的通解为 $c_1e^x + c_2e^{2x}$,则 y"+ay'+by = 1 满足 y(0)=2,y'(0)=-1 的解是

三、计算题: 本题共有8小题, 其中16-19 小题每小题7分, 20-23 小题每小题8分, 共60分。计算题必须写出必要的计算过程, 只写答案的不给分。

16.
$$\lim_{x\to 0} \frac{\ln(\sin^2 x + e^x) - x}{\ln(x^2 + e^{2x}) - 2x}$$

17.函数
$$f(x) = \frac{1}{1 - e^{\frac{x}{x-1}}}$$
, 求间断点及其分类

18.设
$$y = y(x)$$
由参数方程 $\begin{cases} x = t - \ln(1+t) \\ y = t^2 + t \end{cases}$ 所确定,求 $\frac{d^2 y}{dx^2}$

19. 试在曲线 $y = x^2 - x$ 上求一点 p 的坐标, 使得 P 点到定点 A(0, 1)的最近距离

$$20.求 \int \frac{dx}{\sqrt{x}\sin^2 \sqrt{x}}$$

21.
$$f'(\sin^2 x) = \cos 2x - \tan^2 x$$
, $\Re f(x)$

$$22.\sum_{n=2}^{\infty} \frac{\sqrt{n+2}-\sqrt{n-2}}{n^{\alpha}}$$
,判断其收敛性

23. 求过点 A(1, 1, 1)且与直线
$$\begin{cases} x=2z-1 \\ y=3z-2 \end{cases}$$
 垂直的平面方程

四、综合题: 本大题共 3 小题, 每小题 10 分, 共 30 分。

24.已知函数
$$f(x) = \lim_{n \to \infty} \frac{x^{2n-1} + ax^2 + bx}{x^{2n} + 1}$$
为连续函数,求a,b的值

$$25$$
 设 $f(x)$ 有二阶导数,且 $f''(x) > 0$, $\lim_{x\to 0} \frac{f(x)}{x} = 1$,证明当 $x > 0$ 时, $f(x) > x$

$$26.$$
若 $\int_{x}^{2 \ln 2} \frac{dt}{\sqrt{e^{t}-1}} = \frac{\pi}{6}$,求x的值

浙江省 2015 年选拔优秀高职高专毕业生进入本科学习统一考试 高等数学

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分

注意事项:

1.	答题前,	考生务必将自己的姓名、	准考证号用黑色字迹的签字笔或钢笔填写在答题纸规
	定的位置	i.L.	

- 2. 每小题选出答案后,用 2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。不能答在试题卷上。
- 一、选择题: 本大题共 5 小题, 每小题 4 分, 共 20 分。在每小题给出的四个选项中, 只有一项是符合题目要求的。

$1. $ 当 $x \rightarrow X_0$ 时,	f(x)是g(x)的	的高阶无穷小,	则当 $x \to X_0$ 时,	f(x)-g(x)是 g(x)的()
A. 等价无穷小 C. 高阶无穷小		同阶无穷小 低阶无穷小			
		f(a+x)-f	r(a-x)		

2. 设 f(x)在 x=a 处可导,则 $\lim_{x\to 0} \frac{f(a+x)-f(a-x)}{x}$ 等于()

C.0

A.
$$\int F'(x)dx = f(x) + C$$
 B. $\int f(x)dx = F(x) + C$
C. $\int F(x)dx = F(x) + C$ D. $\int f'(x)dx = F(x) + C$

4. 设直线
$$L_1$$
: $\frac{x-1}{1} = \frac{y-5}{1} = \frac{z+3}{-2}$ 与 L_2 : $\begin{cases} x-z=1 \\ y+2z=3 \end{cases}$, 则 L_1 与 L_2 的夹角是()

A.
$$\frac{\pi}{6}$$
 B. $\frac{\pi}{4}$ C. $\frac{\pi}{3}$ D. $\frac{\pi}{2}$

5 在下列级数中,发散的是()

B.2 f'(a)

A.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\ln(n+1)}$$
 B. $\sum_{n=1}^{\infty} \frac{n}{3^{n-1}}$

C.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{3^n}$$
 D. $\sum_{n=1}^{\infty} \frac{n}{3n-1}$

二、 填空题: 本大题共 10 小题, 每小题 4 分, 共 40 分。

6.数列极限
$$\lim_{n\to\infty} n[\ln(n-1) - \ln n] =$$

8.函数
$$F(x) = \int_1^x \left(1 - \frac{1}{\sqrt{t}}\right) dt (x > 0)$$
的单调减区间是 _____

9.设函数f(x) =
$$\begin{cases} \frac{\sqrt{2+x} - \sqrt{2-x}}{x}, -2 < x < 0 \\ a, x \ge 0 \end{cases}$$
 在x = 0处连续,则必有a = _____

$$10.$$
设 $y = ln (1 + 2^{-x})$,则 $dy =$

11 若
$$f'(x) = |x|$$
,且 $f(-2) = 1$,则 $f(x) =$

$$12. \int \frac{1}{1+e^x} dx = \underline{\hspace{1cm}}$$

13.已知级数
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
,则级数 $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$ 的和为 _____

15.直线
$$\frac{x+2}{3} = \frac{y-3}{-2} = z$$
与平面 $x + 2y + 2z = 5$ 的交点坐标是

三、计算题:本题共有8小题,其中16-19小题每小题7分,20-23 小题每小题8分,共60分。计算题必须写出必要的计算过程,只写答案的不给分。

16. 设
$$f(x+\frac{1}{x}) = \frac{x^2}{x^4+1}(x \neq 0)$$
, 求 $f(x)$

17.求极限
$$\lim_{x \to +\infty} x^2 (1 - \cos \frac{1}{x})$$

18.设
$$y = \cos[f(x^2)]$$
其中f具有二阶导数,求 $\frac{d^2y}{dx^2}$

19.已知曲线 $y = x^2 + ax + b$ 与 $2y = xy^3$ -1在点(1,-1)处有公切线,求 a,b的值

20.讨论方程 lnx = ax (a > 0)有几个实根

22. 计算
$$\int_0^{\frac{\pi}{2}} |\sin x - \cos x| dx$$

23.求曲线 $(x-b)^2 + y^2 = a^2(b > a > 0)$ 所围成的平面图形绕 y轴旋转一周所得的旋转体体积

四、综合题: 本大题共 3 小题, 每小题 10 分, 共 30 分。

24.已知函数
$$y = \frac{x^3}{(x-1)^2}$$
,求

- (1). 函数的单调区间及极值;
- (2). 函数图形的凹凸区间及拐点;
- (3). 函数图形的渐近线。

25. 已知
$$f(x) = \begin{cases} x, 0 \le x < 1 \\ 2 - x, 1 \le x \le 2 \end{cases}$$
, 计算

(1).
$$S_0 = \int_0^2 f(x) e^{-x} dx$$

(2).
$$S_0 = \int_{2n}^{2n+2} f(x-2n) e^{-x} dx$$

26. 设
$$f(x) = \sin x - \int_0^x (x-t)f(t)dt$$
为连续函数,试求 $f(x)$

浙江省 2016 年选拔优秀高职高专毕业生进入本科学习统一考试 高等数学

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分

注意事项:

- 1. 答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
- 2. 每小题选出答案后,用 2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。不能答在试题卷上。
- 一、选择题: 本大题共 5 小题, 每小题 4 分, 共 20 分。在每小题给出的四个选项中, 只有一项是符合题目要求的。
- 1. 设f(x) = [x] x,则f(x)为().
- A.有界函数 B.偶函数 C.奇函数 D.无界函数
- 2. 设f(x)在[a,b]上可导,且 $f'(x_0) = 0$, $x_0 \in (a,b)$,则
- $A.f(x_0)$ 为函数的极值
- B. f'(x)在 $x = x_0$ 处连续
- c. f(x)为 $x = x_0$ 处可微
- $D.(x_0, f(x_0))$ 为函数的拐点
- **3** 设f'(1)=3, f (1)=2.f(0)=1,则 $\int_0^1 x f''(x) dx=$
- A.2 B.3 C.0 D.1
- 4. 若实数0 < b < a, 则级数 $\sum_{n=1}^{\infty} \frac{x^n}{a^n + b^n}$ 的收敛半径为 A.a B.b C.a+b D.b-a
- 5. 微分方程 $y'' + y' + y = x \sin x$, 则其特解形式为
- $A. x(a \sin x + b \cos x)$ $B. x[(ax + b) \sin x + (cx + d) \cos x]$
- $C.(ax + b) \sin x + (cx + d) \cos x$ $D.(ax + b) (c \sin x + d \cos x)$

二. 填空题: 本大题共10小题,每小题4分,共40分。

6. 极限
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} =$$

7. 函数 $f(x) = \ln(x^2 - 1)$ 的定义域为______

9. 若y = y(x) 为方程 $\sin y + xe^y + 2x = 0$ 所确定的隐函数,则 dy_____

$$10. \int x \ln x dx = \underline{\hspace{1cm}}$$

11.
$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} \right) = \underline{\hspace{1cm}}$$

13.
$$y'' + 3y' + 2y = 0$$
的通解为 ______

14. 设
$$\vec{a} = (-1, -3, 6)$$
 , $\vec{b} = (4, -3, 0)$, 则 $\vec{a} \times \vec{b} =$ _____

15.. 与平面2x + y - z + 3 = 0距离为√6的平面方程为_____

三、计算题:本题共有8小题,其中16-19小题每小题7分,20-23 小题每小题8分,共60分。计算题必须写出必要的计算过程,只写答案的不给分。

16. 设
$$f(x) = \begin{cases} \frac{e^x - 1 - x - ax^2}{x^2}, & x \neq 0 \\ 1, & x = 0 \end{cases}$$
, 且 $f(x)$ 在 $x = 0$ 处连续,求 a

18. 求函数 f (x) =
$$\frac{-7x + 6}{-x^2 + 3x - 2}$$
的拐点与凹凸区间

20. 计算∫ xcos2xdx

21. 计算
$$\int_3^5 \frac{1}{x^2 - 3x + 2} dx$$

22. 计算定积分
$$\int_{-1}^{1} |x| \sqrt{1-x^2} dx$$

23. 将f
$$(x) = \frac{1}{(x+1)^2}$$
展开成x的幂级数,并指出其收敛域

四、综合题: 本大题共 3 小题, 每小题 10 分, 共 30 分。

24. 已知
$$f(x) = \lim_{n \to \infty} \frac{x^{2n} - 1}{x^{2n} + 1}$$
,求 $f(x)$

25. 证明 : 当
$$x > 0$$
时, $\cos x > 1 - \frac{x^2}{2}$

26. 设f(x)在[0,2]上可微,且有(0)=
$$\int_1^2 f(x) dx$$
, 求证:
存在一点 $\xi \in [0,2]$,使得f'(ξ)= 0

浙江省 2017 年选拔优秀高职高专毕业生进入本科学习统一考试

高等数学 选择题部分

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分

注意事项:

1. 答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。

2. 每小题选出答案后,用 2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。不能答在试题卷上。

一、选择题:本大题共5小题,每小题4分,共20分。

	1 Ref 1 7 (12) 1 0 1 /2 1 /3 1 /4 1 /2 1 /3 1 /4 1				
1,	已知函数 $f(x) = e^{\frac{1}{x}}$,x=0 是 $f(x)$ 的()		
Α,	可去间断点	B、连续点	C、跳跃间断点	D、第二类间断点	
2、	设 $f(x)$ 在 $[a,b]$ 连续	读,下列正确的是()		
Α,	必存在一点 $\xi \in (a, a)$	b),使得 $\int_a^b f(x)dx = f$	$f(\xi)(b-a)$		

B、必存在一点 $\xi \in (a,b)$, 使得 $f(a) - f(b) = f'(\xi)(b-a)$

$$C$$
、必存在一点 $\xi \in (a,b)$,使得 $f(\xi) = 0$

D、必存在一点
$$\xi \in (a,b)$$
,使得 $f'(\xi) = 0$

3、下列选项正确的是()

$$A, \int f'(x)dx = f(x)$$

$$\mathsf{B}, \ \int df(x) = f(x)$$

$$C, \frac{d}{dx} \int f(x) dx = f(x)$$

$$D, d \int f(x) dx = f(x)$$

4、下列哪个是发散的()

A,
$$\int_0^1 \frac{1}{\sqrt{x}} dx$$
 B, $\int_0^1 \frac{1}{\sqrt{1-x^2}} dx$ C, $\int_1^{+\infty} \frac{1}{x^2} dx$ D, $\int_0^1 \frac{1}{x^2} dx$

5、微分方程 $y'' - 3y' + 2y = e^x \sin x$ 的特解是 ()

$$A_x ae^x \sin x$$

$$C_x xe^{ax} \sin x$$

$$B, xe^x(a\cos x + b\sin x)$$

D.
$$e^x(a\cos x + b\sin x)$$

二、填空题(本大题共10小题,每小题4分,共40分)

6、已知 f(x)的定义域为(0,1),则 $f(2^x)$ 的定义域为_____。

7、已知
$$\lim_{x\to 0} (1+kx)^{\frac{1}{x}} = 2$$
,则 $k =$ ______。

8、若
$$f(x) = \ln(1+x^2)$$
,则 $\lim_{h\to 0} \frac{f(3)-f(3-h)}{h} = \underline{\qquad}$ 。

9、已知
$$y = y(x)$$
 由 $e^y + xy - e = 0$ 所确定,则 $dy|_{x=0}$ =_____。

10、方程
$$x^5 + 2x - 5 = 0$$
 的正根的个数为_____。

11、已知
$$y = x^{\frac{1}{x}}$$
,则 $y' = _____$ 。

12.
$$\Re \int_{-\pi}^{\pi} \sin x \cdot \cos x dx = \underline{\hspace{1cm}}$$

13.
$$\Re \frac{d}{dx} \int_0^x tf(t^2) dt = \underline{\hspace{1cm}}$$

14、设在区间
$$[a,b]$$
上, $f(x) > 0$, $f'(x) < 0$, $f''(x) > 0$, $S_1 = \int_a^b f(x) dx$, $S_2 = f(b)(b-a)$,

$$S_3 = \frac{1}{2} [f(a) + f(b)] \cdot (b - a)$$
,则 S_1, S_2, S_3 的大小顺序为_____。

15、幂级数
$$\sum_{n=1}^{\infty} a_n (x-1)^n$$
 在 $x = -3$ 处条件收敛,则级数的收敛半径 $R = ______$ 。

三、计算题(本大题共 8 小题, 其中 16-19 小题每小题 7 分, 20-23 小题每小题 8 分, 共 60 分)

$$16. \ \ \vec{x} \lim_{x \to 0} \frac{\ln(1+x^3)}{x-\sin x}$$

17、已知参数方程
$$\begin{cases} x = 1 - t^2 \\ y = t + t^2 \end{cases}$$
, 则 $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$

18、求
$$\int \arcsin x dx$$

19、 呂知
$$f(x) = \begin{cases} 1 + x^2, x \le 0 \\ e^{-x}, x > 0 \end{cases}$$
 求 $\int_1^3 f(x-2) dx$

20、设函数 $f(x) = \begin{cases} x^2, x \le 1 \\ ax + b, x > 1 \end{cases}$, 当 a, b 取何值时,函数在 x = 1 处连续且可导。

21、求 $\sum_{n=1}^{\infty} nx^{n-1}$ 的收敛区间,并求和函数。

22、求过点(1, 2, 1)且与直线 l_1 : $\frac{x-3}{1} = \frac{y+2}{-2} = \frac{z+1}{-3}$, l_2 : $\frac{x}{0} = \frac{y}{1} = \frac{z}{1}$ 平行的平面方程。

23、讨论 $f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$ 单调区间、极值、凹凸区间、渐近线

四、综合题(本大题共3大题,每小题10分,共30分)

24、设 D_1 是由抛物线 $y=2x^2$ 和直线x=a, x=2及y=0所围成的平面区域, D_2 是由抛物 线 $y=2x^2$ 和直线x=a, y=0所围成的平面区域,0<a<2。

- (1) 求 D_1 绕x轴的体积 V_1 , D_2 绕y轴的体积 V_2
- (2) 求a的值,使得 $V_1 + V_2$ 取得最大值,并求最大值

25、设曲线 y = f(x) 过点 (1,1) 的切线在纵轴截距等于切点横坐标,求曲线方程。

26、设 f(x) 在[0, 1]上可导,且 f(1) = 0,证明存在 $\xi \in (0,1)$ 使 $\xi f'(\xi) + f(\xi) = 0$

浙江省 2018 年选拔优秀高职高专毕业生进入本科学习统一考试

高等数学 选择题部分

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分

注意事项:

- 1. 答题前, 考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定 的位置上。
- 2. 每小题选出答案后,用 2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮 擦干净后,再选涂其它答案标号。不能答在试题卷上。
- 一、选择题: 本大题共5小题,每小题4分,共20分。

1、已知函数
$$f(x) = \begin{cases} \frac{\sin x}{x}, & x < 0 \\ x, & x \ge 0 \end{cases}$$
,则 $x = 0$ 是 $f(x)$ 的(

- A、可去间断点
- B、连续点
- C、跳跃间断点 D、第二类间断点
- 2、当 $x \to 0$ 时, $\sin x x \cos x = x^2$ 的()无穷小

- B、低阶
- C、同阶

3、设
$$f(x)$$
二阶可导,在 $x = x_0$ 处 $f''(x_0) < 0$, $\lim_{x \to x_0} \frac{f(x)}{x - x_0} = 0$,则 $f(x)$ 在 $x = x_0$ 处()

- A、取得极小值
- B、取得极大值
- c、不是极值
- D、 $(x_0, f(x_0))$ 是拐点
- 4、已知 f(x)在[a,b]上连续,则下列说法不正确的是()

A. 已知
$$\int_{a}^{b} f^{2}(x)dx = 0$$
,则在 $[a,b]$ 上, $f(x) = 0$

B.
$$\frac{d}{dx} \int_{x}^{2x} f(t)dt = f(2x) - f(x), \sharp + x, 2x \in [a, b]$$

 $C. f(a) \cdot f(b) < 0, 则(a,b)$ 内有 ξ , 使得 $f(\xi) = 0$

D. y = f(x)在[a,b]上有最大值M和最小值m,则 $m(b-a) \le \int_a^b f(x)dx \le M(b-a)$

5、下列级数中,绝对收敛的是()

A.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n+1}}$$

B.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\ln(n+1)}$$

A,
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n+1}}$$
 B, $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\ln(n+1)}$ C, $\sum_{n=0}^{\infty} \frac{\cos n}{\sqrt{n^3+9}}$ D, $\sum_{n=1}^{\infty} \frac{1}{n}$

$$D \cdot \sum_{n=1}^{\infty} \frac{1}{n}$$

二、填空题(本大题共10小题,每小题4分,共40分)

6.
$$\lim_{x\to 0} (1+a\sin x)^{\frac{1}{x}} = \underline{\hspace{1cm}}$$

7、设
$$f(x)$$
可导,并且 $\lim_{x\to 0} \frac{f(3)-f(3-2x)}{\sin x} = 3$,则 $f'(3) =$ ______。

8、若常数
$$a,b$$
使得 $\lim_{x\to 0} \frac{\sin x(\cos x - b)}{e^{2x} - a} = 5$,则 b=_____。

9、已知参数方程
$$\begin{cases} x = t - \arctan t \\ y = \ln(1+t) \end{cases}$$
 , 则 $\frac{dy}{dx}\Big|_{t=1} = \underline{\hspace{1cm}}$ 。

10、设
$$y = y(x)$$
是方程 $x^2 - y^2 - 1 = 0$ 确定的隐函数,则 $\frac{d^2y}{dx^2} =$ ______。

11、求
$$y = \frac{x}{1+x^2}$$
的单增区间_____。

12、求已知
$$\int f(x)dx = e^{x^2} + C$$
,则 $\lim_{n \to \infty} \sum_{k=0}^{n-1} \frac{1}{n} \cdot f(\frac{k}{n}) = \underline{\qquad}$

13.
$$\int_{e}^{+\infty} \frac{1}{x(\ln x)^2} dx = \underline{\hspace{1cm}}_{\circ}$$

14、由
$$y = x^2$$
, $y = 1$, $x = 2$ 围成的图形面积为_____。

15、常系数齐次线性微分方程
$$y''-2y'+y=0$$
的通解 为_____。

三、计算题 (本大题共 8 小题,其中 16-19 小题每小题 7 分,20-23 小题每小题 8 分, 共 60 分)

17、设
$$y(x) = (1 + \sin x)^x$$
, 求 $y(x)$ 在 $x = \pi$ 处的微分

$$18、求 \int_0^{5\pi} \sqrt{1-\cos^2 x} dx$$

19、求
$$\int \arctan \sqrt{x} dx$$

$$20, \int_{-1}^{1} \left(\frac{x}{\sqrt{5-4x}} + \frac{x \cos x}{1+x^4} \right) dx$$

21、已知
$$f(x) = \begin{cases} 2x + b, x < 0 \\ \ln(1 + ax), x \ge 0 \end{cases}$$
在 $x = 0$ 处可导,求 a, b .。

22、求过点 A(-1, 2, 1)且平行于
$$2x-3y+z-7=0$$
 又与直线:
$$\begin{cases} x=t-1 \\ y=t+3$$
 相交的直线方程。
$$z=2t \end{cases}$$

23、讨论
$$f(x) = \frac{1}{3}x^3 - 2x^2 + 3x - 1$$
 极值和拐点

四、综合题(本大题共3大题,每小题10分,共30分)

24、利用
$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n$$
,

- (1) 将函数 ln(1+x)展开成x的幂级数,并指出其收敛域;
- (2) 将函数 ln(3+x)展开成x-2的幂级数,并指出其收敛域.

25、f(x)在[1,+∞)上导函数连续,f(x)>0,已知曲线f(x)与直线x=1,x=t(t>1)及x轴 所围成的曲边梯形绕x轴旋转一周所围成的旋转体体积是该曲边梯形的 πt 倍,求 f(x)

- 26、f(x) 在[a,b]连续且(a,b)二阶可导,过两点(a,f(a))和(b,f(b))的直线与曲线交于 (c,f(c))(a < c < b),证明:
- (1). 在(a,b)内存在两点 ξ_1,ξ_2 ,使得 $f'(\xi_1)=f'(\xi_2)$
- (2). 在(a,b)存在一点 ξ ,使得f" $(\xi) = 0$.

浙江省 2019 年选拔优秀高职高专毕业生进入本科学习统一考试

高等数学 选择题部分

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

一、选择题: 本大题共5小题,每小题4分,共20分。

- 1.设 $\lim_{n\to\infty} x_n = a$,则说法不正确的是()
- A.对于正数 2,一定存在正整数 N ,使得当 n > N 时,都有 $\left| X_n a \right| < 2$
- B.对任意给定的无论多么小的正数 ε , 存在整数 N , 使得当 n > N 时, 不等式 $|x_n a| < \varepsilon$ 成立
- C.对于任意给定的 a 的邻域 $(a-\varepsilon,a+\varepsilon)$, 总存在正整数 N, 使得当 n>N 时, 所有的点 x_n 都
- 落在 $(a-\varepsilon,a+\varepsilon)$ 内,而只有有限个(至多只有N个)在这个区间外
- D.可以存在某个小的正数 ε_0 , 使得有无穷多个点 ε_0 落在这个区间 $(a-\varepsilon_0,a+\varepsilon_0)$ 外
- 2.设在点 x_0 的某邻域内有定义,则在点 x_0 处可导的一个充分必要条件是()

A.
$$\lim_{h\to 0} \frac{f(x_0 + 2h) - f(x_0)}{h}$$
 存在
B. $\lim_{h\to 0^-} \frac{f(x_0) - f(x_0 - h)}{h}$ 存在

B.
$$\lim_{h\to 0^-} \frac{f(x_0) - f(x_0 - h)}{h}$$
存在

$$\text{C.}\lim_{h\to 0}\frac{f(x_0+h)-f(x_0-h)}{h}$$
存在
$$\text{D.}\lim_{h\to +\infty}h[f(x_0+\frac{1}{h})-f(x_0)]$$
存在

D.
$$\lim_{h \to +\infty} h[f(x_0 + \frac{1}{h}) - f(x_0)]$$
存在

$$3. \lim_{n \to \infty} \frac{1}{n} \left[\sqrt{1 + \sin \frac{\pi}{n}} + \sqrt{1 + \sin \frac{2\pi}{n}} + \dots + \sqrt{1 + \sin \frac{n\pi}{n}} \right]$$
 \(\xi \tau)

A.
$$\int_{1}^{1} \sqrt{\sin \pi x} dx$$

B.
$$\int_{0}^{1} \sqrt{1 + \sin \pi x} dx$$

C.
$$\int_{0}^{1} \sqrt{1 + \sin x} dx$$

A.
$$\int_0^1 \sqrt{\sin \pi x} dx$$
 B. $\int_0^1 \sqrt{1 + \sin \pi x} dx$ C. $\int_0^1 \sqrt{1 + \sin x} dx$ D. $\pi \int_0^1 \sqrt{1 + \sin x} dx$

4.下列级数或广义积分发散的是()

A.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n+100}$$

B.
$$\sum_{1}^{\infty} \cos^2 t$$

$$C. \int_1^2 \frac{1}{\sqrt{4-x^2}} dx$$

A.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n+100}$$
 B. $\sum_{n=1}^{\infty} \cos^2 n$ C. $\int_1^2 \frac{1}{\sqrt{4-x^2}} dx$ D. $\int_1^{+\infty} \frac{1}{(1+x^2)^2} dx$

5.微分方程 y''-4y'+4y=0 的通解为()

A.
$$y(x) = c_1 x + c_2 e^{-2x}$$

A.
$$y(x) = c_1 x + c_2 e^{-2x}$$
 B. $y(x) = (c_1 + c_2 x)e^{-2x}$

C.
$$y(x) = (c_1 + c_2 x)e^{2x}$$

C.
$$y(x) = (c_1 + c_2 x)e^{2x}$$
 D. $y(x) = (c_1 + c_2 x)xe^{-2x}$

二、填空题(本大题共10小题,每小题4分,共40分)

6.极限
$$\lim_{n\to\infty} (1+\sin\frac{1}{n})^n = \underline{\hspace{1cm}}$$

7.设一堆雪的高度 h 与时间 t 的关系为 $h(t) = 100 - t^2$,则高度在时刻 t = 5 时的变化率为

8.当
$$a =$$
____ 时,极限 $\lim_{x \to 0} \frac{1 - \cos x}{\ln(1 + x^3)} (a - e^x)$ 存在且不等于 0

9.设
$$\begin{cases} x = \sin t \\ y = \cos t \end{cases}, \quad 则 \frac{d^2 y}{dx^2} = \underline{\qquad}$$

10.设 $g(x) = \int_0^x \sin t^2 dt$,且当 $x \to 0$ 时, g(x) 与 x^n 是同阶无穷小,则 n =______

11.定积分
$$\int_0^1 \sqrt{1-x^2} dx = _____$$

12.设函数 y = y(x) 由方程 $e^{x+y} - xy = 0$ 确定,则 $\frac{dy}{dx} =$ ______

13.曲线
$$y(x) = x^3 + 3x^2$$
 的拐点是_____

14.由曲线 $y = \sqrt{x}$, x = 1, x = 2 及 x 轴所围成的梯形绕 x 轴旋转一周而成的旋转体体积为 _____

15.设
$$y = 3^{2x}$$
,则 $y^{(n)} =$ ____

三、计算题(本大题共 8 小题, 其中 16-19 小题每小题 7 分, 20-23 小题每小题 8 分, 共 60 分)

16.极限
$$\lim_{x\to 0} \frac{\ln(1+x)-x}{x^2}$$

17. 设
$$y(x) = \ln(2 + \cos \pi x) + x^x$$
, 求 $y(x)$ 在 $x = 1$ 处的微分

18.求不定积分
$$\int \sin \sqrt{x} dx$$

19.设
$$f(x) = \begin{cases} \cos x, x \in [0, \frac{\pi}{2}) \\ x, x \in [\frac{\pi}{2}, \pi] \end{cases}$$
,求 $p(x) = \int_0^x f(t) dt$ 在 $[0, \pi]$ 上的表达式

20. 一物体由静止以速度 $v(t) = \frac{3t}{\sqrt{t+1}} (\mathbb{X}/\mathbb{W})$ 作直线运动,其中t表示运动的时间,求物体运动到 8 秒时离开出发点的距离

21. 问是否存在常数 a 使得函数 $f(x) = \begin{cases} x^2 + a, x \le 0 \\ 1 - e^{ax}, x > 0 \end{cases}$ 在 x = 0 处可导?若存在求出常数 a,若不存在,请说明原因

22. 求过 A(1,0,2) 且与两平面 $\pi_1: x-y+z+1=0, \pi_2: x-z=0$ 都平行的直线的方程

23.求幂级数 $\sum_{n=1}^{\infty} \frac{1}{n} x^{n-1}$ 的收敛区间及和函数,并计算级数 $\sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{1}{2}\right)^{n-1}$

四、综合题(本大题共 3 大题,每小题 10 分,共 30 分)

24.设 y = f(x) 是第一象限内连续点 M(0,4), N(2,0) 的第一段连续曲线, P(x,y) 为该曲线上任意一点,点 B 为 P 在 x 轴上的投影, O 为坐标原点,若梯形 OBPM 的面积与曲边三角形 BPN 的面积之和等于另一个曲线 $y = \frac{x^4}{24} + \frac{x}{3}$ 在点 $\left(x, \frac{x^4}{24} + \frac{x}{3}\right)$ 处的切线斜率, 求该曲线 y = f(x) 的 方程(注: 曲边三角形 BPN 是指由直线段 BP, x 轴以及曲线段 PN 所围成的封闭图形)

25. 假设某公司生产某产品 x 千件的总成本为 $c(x) = 2x^3 - 12x^2 + 30x + 21$ (万元),售出该产品 x 千件的收入 r(x) = 60x (万元),为了使公司取得最大利润,问公司应该生产多少千件产品? (注:利润等于收入减去总成本)

26.设 f(x) 在 [-1,1] 上具有二阶连续导数,且 f(0) = 0

- (1) 写出 f(x) 的带拉格朗日型余项的一阶麦克劳林公式
- (2) 设M, m分别为f''(x)在[-1,1]上的最大值与最小值,证明: $\frac{m}{3} \le \int_{-1}^{1} f(x) dx \le \frac{M}{3}$
- (3) 证明: 在[-1,1]上至少存在一点 η 使得 $f''(\eta) = 3\int_{-1}^{1} f(x)dx$